You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_imperative_selected_ro...

119 lines
4.3 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.nn import Embedding
from paddle.fluid.optimizer import SGDOptimizer
import numpy as np
import paddle.fluid.core as core
import paddle
class SimpleNet(paddle.nn.Layer):
def __init__(self, vocab_size, hidden_size, dtype):
super(SimpleNet, self).__init__()
self.emb = fluid.dygraph.Embedding(
size=[vocab_size, hidden_size],
dtype=dtype,
param_attr='emb.w',
is_sparse=True)
def forward(self, input):
input_emb = self.emb(input)
return input_emb, self.emb
class TestSimpleNet(unittest.TestCase):
def test_selectedrows_gradient1(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for place in places:
for dtype in ["float32", "float64"]:
for sort_sum_gradient in [True, False]:
paddle.disable_static(place)
fluid.set_flags({
'FLAGS_sort_sum_gradient': sort_sum_gradient
})
# grad_clip = fluid.clip.GradientClipByGlobalNorm(5.0)
input_word = np.array([[1, 2], [2, 1]]).astype('int64')
input = paddle.to_tensor(input_word)
simplenet = SimpleNet(20, 32, dtype)
adam = SGDOptimizer(
learning_rate=0.001,
parameter_list=simplenet.parameters(
)) # grad_clip=grad_clip
input_emb, emb = simplenet(input)
self.assertTrue(emb.weight.gradient() is None)
self.assertTrue(input_emb.gradient() is None)
input_emb.backward()
adam.minimize(input_emb)
self.assertTrue(emb.weight.gradient() is not None)
emb.clear_gradients()
self.assertTrue(emb.weight.gradient() is None)
input_emb.clear_gradient()
self.assertTrue(input_emb.gradient() is not None)
paddle.enable_static()
def test_selectedrows_gradient2(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for place in places:
for sort_sum_gradient in [True, False]:
with fluid.dygraph.guard(place):
fluid.set_flags({
'FLAGS_sort_sum_gradient': sort_sum_gradient
})
grad_clip = fluid.clip.GradientClipByGlobalNorm(5.0)
input_word = np.array([[1, 2], [2, 1]]).astype('int64')
input = to_variable(input_word)
simplenet = SimpleNet(20, 32, "float32")
adam = SGDOptimizer(
learning_rate=0.001,
parameter_list=simplenet.parameters(),
grad_clip=grad_clip)
input_emb, emb = simplenet(input)
self.assertTrue(emb.weight.gradient() is None)
self.assertTrue(input_emb.gradient() is None)
input_emb.backward()
adam.minimize(input_emb)
self.assertTrue(emb.weight.gradient() is not None)
emb.clear_gradients()
self.assertTrue(emb.weight.gradient() is None)
input_emb.clear_gradient()
self.assertTrue(input_emb.gradient() is not None)
if __name__ == '__main__':
unittest.main()