You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_l1_loss.py

186 lines
7.2 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
class TestFunctionalL1Loss(unittest.TestCase):
def setUp(self):
self.input_np = np.random.random(size=(10, 10, 5)).astype(np.float32)
self.label_np = np.random.random(size=(10, 10, 5)).astype(np.float32)
def run_imperative(self):
input = paddle.to_tensor(self.input_np)
label = paddle.to_tensor(self.label_np)
dy_result = paddle.nn.functional.l1_loss(input, label)
expected = np.mean(np.abs(self.input_np - self.label_np))
self.assertTrue(np.allclose(dy_result.numpy(), expected))
self.assertTrue(dy_result.shape, [1])
dy_result = paddle.nn.functional.l1_loss(input, label, reduction='sum')
expected = np.sum(np.abs(self.input_np - self.label_np))
self.assertTrue(np.allclose(dy_result.numpy(), expected))
self.assertTrue(dy_result.shape, [1])
dy_result = paddle.nn.functional.l1_loss(input, label, reduction='none')
expected = np.abs(self.input_np - self.label_np)
self.assertTrue(np.allclose(dy_result.numpy(), expected))
self.assertTrue(dy_result.shape, [10, 10, 5])
def run_static(self, use_gpu=False):
input = paddle.data(name='input', shape=[10, 10, 5], dtype='float32')
label = paddle.data(name='label', shape=[10, 10, 5], dtype='float32')
result0 = paddle.nn.functional.l1_loss(input, label)
result1 = paddle.nn.functional.l1_loss(input, label, reduction='sum')
result2 = paddle.nn.functional.l1_loss(input, label, reduction='none')
y = paddle.nn.functional.l1_loss(input, label, name='aaa')
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
static_result = exe.run(
feed={"input": self.input_np,
"label": self.label_np},
fetch_list=[result0, result1, result2])
expected = np.mean(np.abs(self.input_np - self.label_np))
self.assertTrue(np.allclose(static_result[0], expected))
expected = np.sum(np.abs(self.input_np - self.label_np))
self.assertTrue(np.allclose(static_result[1], expected))
expected = np.abs(self.input_np - self.label_np)
self.assertTrue(np.allclose(static_result[2], expected))
self.assertTrue('aaa' in y.name)
def test_cpu(self):
paddle.disable_static(place=paddle.fluid.CPUPlace())
self.run_imperative()
paddle.enable_static()
with fluid.program_guard(fluid.Program()):
self.run_static()
def test_gpu(self):
if not fluid.core.is_compiled_with_cuda():
return
paddle.disable_static(place=paddle.fluid.CUDAPlace(0))
self.run_imperative()
paddle.enable_static()
with fluid.program_guard(fluid.Program()):
self.run_static(use_gpu=True)
# test case the raise message
def test_errors(self):
def test_value_error():
input = paddle.data(
name='input', shape=[10, 10, 5], dtype='float32')
label = paddle.data(
name='label', shape=[10, 10, 5], dtype='float32')
loss = paddle.nn.functional.l1_loss(
input, label, reduction='reduce_mean')
self.assertRaises(ValueError, test_value_error)
class TestClassL1Loss(unittest.TestCase):
def setUp(self):
self.input_np = np.random.random(size=(10, 10, 5)).astype(np.float32)
self.label_np = np.random.random(size=(10, 10, 5)).astype(np.float32)
def run_imperative(self):
input = paddle.to_tensor(self.input_np)
label = paddle.to_tensor(self.label_np)
l1_loss = paddle.nn.loss.L1Loss()
dy_result = l1_loss(input, label)
expected = np.mean(np.abs(self.input_np - self.label_np))
self.assertTrue(np.allclose(dy_result.numpy(), expected))
self.assertTrue(dy_result.shape, [1])
l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
dy_result = l1_loss(input, label)
expected = np.sum(np.abs(self.input_np - self.label_np))
self.assertTrue(np.allclose(dy_result.numpy(), expected))
self.assertTrue(dy_result.shape, [1])
l1_loss = paddle.nn.loss.L1Loss(reduction='none')
dy_result = l1_loss(input, label)
expected = np.abs(self.input_np - self.label_np)
self.assertTrue(np.allclose(dy_result.numpy(), expected))
self.assertTrue(dy_result.shape, [10, 10, 5])
def run_static(self, use_gpu=False):
input = paddle.data(name='input', shape=[10, 10, 5], dtype='float32')
label = paddle.data(name='label', shape=[10, 10, 5], dtype='float32')
l1_loss = paddle.nn.loss.L1Loss()
result0 = l1_loss(input, label)
l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
result1 = l1_loss(input, label)
l1_loss = paddle.nn.loss.L1Loss(reduction='none')
result2 = l1_loss(input, label)
l1_loss = paddle.nn.loss.L1Loss(name='aaa')
result3 = l1_loss(input, label)
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
static_result = exe.run(
feed={"input": self.input_np,
"label": self.label_np},
fetch_list=[result0, result1, result2])
expected = np.mean(np.abs(self.input_np - self.label_np))
self.assertTrue(np.allclose(static_result[0], expected))
expected = np.sum(np.abs(self.input_np - self.label_np))
self.assertTrue(np.allclose(static_result[1], expected))
expected = np.abs(self.input_np - self.label_np)
self.assertTrue(np.allclose(static_result[2], expected))
self.assertTrue('aaa' in result3.name)
def test_cpu(self):
paddle.disable_static(place=paddle.fluid.CPUPlace())
self.run_imperative()
paddle.enable_static()
with fluid.program_guard(fluid.Program()):
self.run_static()
def test_gpu(self):
if not fluid.core.is_compiled_with_cuda():
return
paddle.disable_static(place=paddle.fluid.CUDAPlace(0))
self.run_imperative()
paddle.enable_static()
with fluid.program_guard(fluid.Program()):
self.run_static(use_gpu=True)
# test case the raise message
def test_errors(self):
def test_value_error():
loss = paddle.nn.loss.L1Loss(reduction="reduce_mean")
self.assertRaises(ValueError, test_value_error)
if __name__ == "__main__":
unittest.main()