You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/dot_op.cc

169 lines
6.4 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/dot_op.h"
namespace paddle {
namespace operators {
class DotOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(true, ctx->HasInput("X"),
platform::errors::PreconditionNotMet(
"Input(X) of DotOp should not be null."));
PADDLE_ENFORCE_EQ(true, ctx->HasInput("Y"),
platform::errors::PreconditionNotMet(
"Input(Y) of DotOp should not be null."));
PADDLE_ENFORCE_EQ(true, ctx->HasOutput("Out"),
platform::errors::PreconditionNotMet(
"Output(Out) of DotOp should not be null."));
auto x_dims = ctx->GetInputDim("X");
auto x_rank = (size_t)x_dims.size();
PADDLE_ENFORCE_EQ(true, 1 == x_rank || 2 == x_rank,
platform::errors::PreconditionNotMet(
"ShapeError: The dimensions of input tensor X (%s) "
"should be 1 or 2",
x_dims.to_str()));
auto y_dims = ctx->GetInputDim("Y");
PADDLE_ENFORCE_EQ(
true, x_rank == (size_t)y_dims.size(),
platform::errors::PreconditionNotMet(
"ShapeError: The shape of input tensor Y: %s should match with "
"input tenosr X: %s",
y_dims.to_str(), x_dims.to_str()));
bool shape_match = true;
for (size_t i = 0; i < x_rank; ++i) {
if (x_dims[i] != y_dims[i]) {
shape_match = false;
break;
}
}
PADDLE_ENFORCE_EQ(true, shape_match,
platform::errors::PreconditionNotMet(
"ShapeError: The shape of input tensor X: %s should "
"be exactly the same "
"with input tensor Y: %s",
x_dims.to_str(), y_dims.to_str()));
auto dims = vectorize(x_dims);
dims[dims.size() - 1] = 1;
ctx->SetOutputDim("Out", framework::make_ddim(dims));
}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
};
class DotOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() final {
AddInput("X", "(Tensor) The first input tensor. ");
AddInput("Y", "(Tensor) The second input tensor. ");
AddOutput("Out", "(Tensor) The result tensor.");
AddComment("");
}
};
class DotGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(
true, ctx->HasInput("X"),
platform::errors::PreconditionNotMet("Input(X) should not be null."));
PADDLE_ENFORCE_EQ(
true, ctx->HasInput("Y"),
platform::errors::PreconditionNotMet("Input(Y) should not be null."));
PADDLE_ENFORCE_EQ(true, ctx->HasInput(framework::GradVarName("Out")),
platform::errors::PreconditionNotMet(
"Input(Out@GRAD) should not be null."));
auto x_grad_name = framework::GradVarName("X");
auto y_grad_name = framework::GradVarName("Y");
if (ctx->HasOutput(x_grad_name)) {
ctx->ShareDim("X", /*->*/ x_grad_name);
ctx->ShareLoD("X", /*->*/ x_grad_name);
}
if (ctx->HasOutput(y_grad_name)) {
ctx->ShareDim("Y", /*->*/ y_grad_name);
ctx->ShareLoD("Y", /*->*/ y_grad_name);
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.GetPlace());
}
};
template <typename T>
class DotOpGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("dot_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("Y", this->Input("Y"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetAttrMap(this->Attrs());
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(dot, ops::DotOp, ops::DotOpMaker,
ops::DotOpGradMaker<paddle::framework::OpDesc>,
ops::DotOpGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(dot_grad, ops::DotGradOp);
REGISTER_OP_CPU_KERNEL(
dot, ops::DotKernel<paddle::platform::CPUDeviceContext, float>,
ops::DotKernel<paddle::platform::CPUDeviceContext, double>,
ops::DotKernel<paddle::platform::CPUDeviceContext, int>,
ops::DotKernel<paddle::platform::CPUDeviceContext, int64_t>,
ops::DotKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex64>,
ops::DotKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex128>);
REGISTER_OP_CPU_KERNEL(
dot_grad, ops::DotGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::DotGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::DotGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::DotGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
ops::DotGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex64>,
ops::DotGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex128>);