You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
6.4 KiB
169 lines
6.4 KiB
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/operators/dot_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class DotOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(true, ctx->HasInput("X"),
|
|
platform::errors::PreconditionNotMet(
|
|
"Input(X) of DotOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(true, ctx->HasInput("Y"),
|
|
platform::errors::PreconditionNotMet(
|
|
"Input(Y) of DotOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(true, ctx->HasOutput("Out"),
|
|
platform::errors::PreconditionNotMet(
|
|
"Output(Out) of DotOp should not be null."));
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto x_rank = (size_t)x_dims.size();
|
|
PADDLE_ENFORCE_EQ(true, 1 == x_rank || 2 == x_rank,
|
|
platform::errors::PreconditionNotMet(
|
|
"ShapeError: The dimensions of input tensor X (%s) "
|
|
"should be 1 or 2",
|
|
x_dims.to_str()));
|
|
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
PADDLE_ENFORCE_EQ(
|
|
true, x_rank == (size_t)y_dims.size(),
|
|
platform::errors::PreconditionNotMet(
|
|
"ShapeError: The shape of input tensor Y: %s should match with "
|
|
"input tenosr X: %s",
|
|
y_dims.to_str(), x_dims.to_str()));
|
|
bool shape_match = true;
|
|
for (size_t i = 0; i < x_rank; ++i) {
|
|
if (x_dims[i] != y_dims[i]) {
|
|
shape_match = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
PADDLE_ENFORCE_EQ(true, shape_match,
|
|
platform::errors::PreconditionNotMet(
|
|
"ShapeError: The shape of input tensor X: %s should "
|
|
"be exactly the same "
|
|
"with input tensor Y: %s",
|
|
x_dims.to_str(), y_dims.to_str()));
|
|
auto dims = vectorize(x_dims);
|
|
dims[dims.size() - 1] = 1;
|
|
ctx->SetOutputDim("Out", framework::make_ddim(dims));
|
|
}
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class DotOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() final {
|
|
AddInput("X", "(Tensor) The first input tensor. ");
|
|
AddInput("Y", "(Tensor) The second input tensor. ");
|
|
AddOutput("Out", "(Tensor) The result tensor.");
|
|
AddComment("");
|
|
}
|
|
};
|
|
|
|
class DotGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
true, ctx->HasInput("X"),
|
|
platform::errors::PreconditionNotMet("Input(X) should not be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
true, ctx->HasInput("Y"),
|
|
platform::errors::PreconditionNotMet("Input(Y) should not be null."));
|
|
PADDLE_ENFORCE_EQ(true, ctx->HasInput(framework::GradVarName("Out")),
|
|
platform::errors::PreconditionNotMet(
|
|
"Input(Out@GRAD) should not be null."));
|
|
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
auto y_grad_name = framework::GradVarName("Y");
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->ShareDim("X", /*->*/ x_grad_name);
|
|
ctx->ShareLoD("X", /*->*/ x_grad_name);
|
|
}
|
|
if (ctx->HasOutput(y_grad_name)) {
|
|
ctx->ShareDim("Y", /*->*/ y_grad_name);
|
|
ctx->ShareLoD("Y", /*->*/ y_grad_name);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class DotOpGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("dot_grad");
|
|
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("Y", this->Input("Y"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetAttrMap(this->Attrs());
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(dot, ops::DotOp, ops::DotOpMaker,
|
|
ops::DotOpGradMaker<paddle::framework::OpDesc>,
|
|
ops::DotOpGradMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(dot_grad, ops::DotGradOp);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
dot, ops::DotKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::DotKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::DotKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::DotKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::DotKernel<paddle::platform::CPUDeviceContext,
|
|
paddle::platform::complex64>,
|
|
ops::DotKernel<paddle::platform::CPUDeviceContext,
|
|
paddle::platform::complex128>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
dot_grad, ops::DotGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::DotGradKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::DotGradKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::DotGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::DotGradKernel<paddle::platform::CPUDeviceContext,
|
|
paddle::platform::complex64>,
|
|
ops::DotGradKernel<paddle::platform::CPUDeviceContext,
|
|
paddle::platform::complex128>);
|