You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
338 lines
13 KiB
338 lines
13 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/tensor.h"
|
|
#include "paddle/fluid/operators/jit/kernels.h"
|
|
#include "paddle/fluid/operators/math/cpu_vec.h"
|
|
#include "paddle/fluid/platform/cpu_info.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace math {
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
|
|
|
template <typename T>
|
|
struct ValueClip {
|
|
HOSTDEVICE T operator()(const T& x) const {
|
|
const T kThreshold = static_cast<T>(-64.);
|
|
return x < kThreshold ? kThreshold : x;
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T, bool is_test>
|
|
class SoftmaxEigen {
|
|
public:
|
|
void operator()(const DeviceContext& context, const int axis_dim,
|
|
const framework::Tensor* X, framework::Tensor* Y) {
|
|
constexpr int kBatchDim = 0;
|
|
constexpr int kClassDim = 1;
|
|
constexpr int kAxisDim = 1;
|
|
|
|
auto logits = EigenMatrix<T>::From(*X);
|
|
auto softmax = EigenMatrix<T>::From(*Y);
|
|
|
|
const int batch_size = logits.dimension(kBatchDim);
|
|
const int num_classes = logits.dimension(kClassDim);
|
|
const int num_remain = num_classes / axis_dim;
|
|
|
|
Eigen::DSizes<int, 1> along_axis(kAxisDim);
|
|
Eigen::DSizes<int, 2> batch_classes(batch_size, num_classes);
|
|
Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
|
|
Eigen::DSizes<int, 2> one_by_class(1, num_classes);
|
|
Eigen::DSizes<int, 3> batch_one_remain(batch_size, 1, num_remain);
|
|
Eigen::DSizes<int, 3> one_axis_one(1, axis_dim, 1);
|
|
Eigen::DSizes<int, 2> one_axis(1, axis_dim);
|
|
Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
|
|
|
|
// For numerical stability, logits should be shifted by maximum number along
|
|
// axis, calculate shifted_logits into softmax tensor for memory reuse.
|
|
if (num_remain == 1) {
|
|
// axis == -1, axis and class in same dimension, calculate along
|
|
// class dimension directly for higher performance
|
|
softmax.device(*context.eigen_device()) = (logits -
|
|
logits.maximum(along_axis)
|
|
.eval()
|
|
.reshape(batch_by_one)
|
|
.broadcast(one_by_class))
|
|
.unaryExpr(ValueClip<T>());
|
|
} else {
|
|
// axis != -1, class dimension split into (axis, remain), max and sum
|
|
// should be calculated along axis dimension
|
|
softmax.device(*context.eigen_device()) =
|
|
(logits.reshape(batch_axis_remain) -
|
|
logits.reshape(batch_axis_remain)
|
|
.maximum(along_axis)
|
|
.eval()
|
|
.reshape(batch_one_remain)
|
|
.broadcast(one_axis_one)
|
|
.reshape(batch_classes))
|
|
.unaryExpr(ValueClip<T>());
|
|
}
|
|
|
|
softmax.device(*context.eigen_device()) = softmax.exp();
|
|
softmax.device(*context.eigen_device()) =
|
|
(softmax *
|
|
softmax.reshape(batch_axis_remain)
|
|
.sum(along_axis)
|
|
.inverse()
|
|
.eval()
|
|
.broadcast(one_axis));
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, bool is_test>
|
|
class SoftmaxEigen<DeviceContext, platform::float16, is_test> {
|
|
public:
|
|
void operator()(const DeviceContext& context, const int axis_dim,
|
|
const framework::Tensor* X, framework::Tensor* Y) {
|
|
constexpr int kBatchDim = 0;
|
|
constexpr int kClassDim = 1;
|
|
constexpr int kAxisDim = 1;
|
|
|
|
auto logits = EigenMatrix<platform::float16>::From(*X);
|
|
auto softmax = EigenMatrix<platform::float16>::From(*Y);
|
|
|
|
const int batch_size = logits.dimension(kBatchDim);
|
|
const int num_classes = logits.dimension(kClassDim);
|
|
const int num_remain = num_classes / axis_dim;
|
|
|
|
Eigen::DSizes<int, 1> along_axis(kAxisDim);
|
|
Eigen::DSizes<int, 2> batch_classes(batch_size, num_classes);
|
|
Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
|
|
Eigen::DSizes<int, 2> one_by_class(1, num_classes);
|
|
Eigen::DSizes<int, 3> batch_one_remain(batch_size, 1, num_remain);
|
|
Eigen::DSizes<int, 3> one_axis_one(1, axis_dim, 1);
|
|
Eigen::DSizes<int, 2> one_axis(1, axis_dim);
|
|
Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
|
|
|
|
// For numerical stability, logits should be shifted by maximum number along
|
|
// axis, calculate shifted_logits into softmax tensor for memory reuse.
|
|
if (num_remain == 1) {
|
|
// axis == -1, axis and class in same dimension, calculate along
|
|
// class dimension directly for higher performance
|
|
softmax.device(*context.eigen_device()) =
|
|
(logits -
|
|
logits.maximum(along_axis)
|
|
.reshape(batch_by_one)
|
|
.broadcast(one_by_class))
|
|
.unaryExpr(ValueClip<platform::float16>());
|
|
} else {
|
|
// axis != -1, class dimension split into (axis, remain), max and sum
|
|
// should be calculated along axis dimension
|
|
softmax.device(*context.eigen_device()) =
|
|
(logits.reshape(batch_axis_remain) -
|
|
logits.reshape(batch_axis_remain)
|
|
.maximum(along_axis)
|
|
.reshape(batch_one_remain)
|
|
.broadcast(one_axis_one)
|
|
.reshape(batch_classes))
|
|
.unaryExpr(ValueClip<platform::float16>());
|
|
}
|
|
|
|
softmax.device(*context.eigen_device()) = softmax.exp();
|
|
softmax.device(*context.eigen_device()) =
|
|
(softmax *
|
|
softmax.reshape(batch_axis_remain)
|
|
.sum(along_axis)
|
|
.inverse()
|
|
.broadcast(one_axis));
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T, bool is_test, typename Enable>
|
|
void SoftmaxFunctor<DeviceContext, T, is_test, Enable>::operator()(
|
|
const DeviceContext& context, const int axis_dim,
|
|
const framework::Tensor* X, framework::Tensor* Y) {
|
|
SoftmaxEigen<DeviceContext, T, is_test>()(context, axis_dim, X, Y);
|
|
}
|
|
|
|
template <class DeviceContext>
|
|
using enable_if_CPU = typename std::enable_if<
|
|
std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type;
|
|
|
|
template <typename DeviceContext, typename T, bool is_test>
|
|
class SoftmaxFunctor<DeviceContext, T, is_test, enable_if_CPU<DeviceContext>> {
|
|
public:
|
|
void operator()(const DeviceContext& context, const int axis_dim,
|
|
const framework::Tensor* X, framework::Tensor* Y) {
|
|
auto in_dims = X->dims();
|
|
constexpr int kBatchDim = 0;
|
|
constexpr int kClassDim = 1;
|
|
|
|
const int num_classes = in_dims[kClassDim];
|
|
const int batch_size = in_dims[kBatchDim];
|
|
const int num_remain = num_classes / axis_dim;
|
|
|
|
if (num_remain == 1 && platform::MayIUse(platform::avx)) {
|
|
const T* in_data = X->data<T>();
|
|
T* out_data = Y->data<T>();
|
|
for (int bs = 0; bs < batch_size; ++bs) {
|
|
T max_val = *std::max_element(in_data, in_data + num_classes);
|
|
max_val *= static_cast<T>(-1);
|
|
vec_add_bias<T, platform::avx>(num_classes, max_val, in_data, out_data);
|
|
vec_clip<T, platform::avx>(num_classes, static_cast<T>(-64), out_data,
|
|
out_data);
|
|
vec_exp<T>(num_classes, out_data, out_data);
|
|
|
|
T sum = 0;
|
|
vec_sum<T, platform::avx>(num_classes, out_data, &sum);
|
|
sum = static_cast<T>(1) / sum;
|
|
vec_scal<T, platform::avx>(num_classes, sum, out_data, out_data);
|
|
|
|
in_data += num_classes;
|
|
out_data += num_classes;
|
|
}
|
|
} else {
|
|
SoftmaxEigen<DeviceContext, T, is_test>()(context, axis_dim, X, Y);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext>
|
|
class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
|
|
public:
|
|
void operator()(const DeviceContext& context, const int axis_dim,
|
|
const framework::Tensor* X, framework::Tensor* Y) {
|
|
auto in_dims = X->dims();
|
|
const float* in_data = X->data<float>();
|
|
float* out_data = Y->data<float>();
|
|
const int kBatchDim = 0;
|
|
const int kClassDim = 1;
|
|
// 2D data. Batch x C
|
|
auto compute_softmax =
|
|
jit::KernelFuncs<jit::SoftmaxTuple<float>, platform::CPUPlace>::Cache()
|
|
.At(in_dims[kClassDim]);
|
|
compute_softmax(in_data, out_data, in_dims[kClassDim], in_dims[kBatchDim],
|
|
in_dims[kClassDim] / axis_dim);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SoftmaxGradEigen {
|
|
public:
|
|
void operator()(const DeviceContext& context, const int axis_dim,
|
|
const framework::Tensor* y, const framework::Tensor* y_grad,
|
|
framework::Tensor* x_grad) {
|
|
auto softmax = EigenMatrix<T>::From(*y);
|
|
auto softmax_grad = EigenMatrix<T>::From(*y_grad);
|
|
auto logits_grad = EigenMatrix<T>::From(*x_grad);
|
|
|
|
constexpr int kBatchDim = 0;
|
|
constexpr int kClassDim = 1;
|
|
|
|
const int batch_size = softmax.dimension(kBatchDim);
|
|
const int num_classes = softmax.dimension(kClassDim);
|
|
const int num_remain = num_classes / axis_dim;
|
|
|
|
Eigen::DSizes<int, 1> along_class(kClassDim);
|
|
Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
|
|
Eigen::DSizes<int, 2> one_by_class(1, num_classes);
|
|
Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
|
|
Eigen::DSizes<int, 2> one_axis(1, axis_dim);
|
|
|
|
auto dot = (softmax * softmax_grad)
|
|
.reshape(batch_axis_remain)
|
|
.sum(along_class)
|
|
.eval()
|
|
.broadcast(one_axis);
|
|
logits_grad.device(*context.eigen_device()) =
|
|
(softmax_grad - dot) * softmax;
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext>
|
|
class SoftmaxGradEigen<DeviceContext, platform::float16> {
|
|
public:
|
|
void operator()(const DeviceContext& context, const int axis_dim,
|
|
const framework::Tensor* y, const framework::Tensor* y_grad,
|
|
framework::Tensor* x_grad) {
|
|
auto softmax = EigenMatrix<platform::float16>::From(*y);
|
|
auto softmax_grad = EigenMatrix<platform::float16>::From(*y_grad);
|
|
auto logits_grad = EigenMatrix<platform::float16>::From(*x_grad);
|
|
|
|
constexpr int kBatchDim = 0;
|
|
constexpr int kClassDim = 1;
|
|
|
|
const int batch_size = softmax.dimension(kBatchDim);
|
|
const int num_classes = softmax.dimension(kClassDim);
|
|
const int num_remain = num_classes / axis_dim;
|
|
|
|
Eigen::DSizes<int, 1> along_class(kClassDim);
|
|
Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
|
|
Eigen::DSizes<int, 2> one_by_class(1, num_classes);
|
|
Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
|
|
Eigen::DSizes<int, 2> one_axis(1, axis_dim);
|
|
|
|
auto dot = (softmax * softmax_grad)
|
|
.reshape(batch_axis_remain)
|
|
.sum(along_class)
|
|
.broadcast(one_axis);
|
|
logits_grad.device(*context.eigen_device()) =
|
|
(softmax_grad - dot) * softmax;
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T, typename Enable>
|
|
void SoftmaxGradFunctor<DeviceContext, T, Enable>::operator()(
|
|
const DeviceContext& context, const int axis_dim,
|
|
const framework::Tensor* y, const framework::Tensor* y_grad,
|
|
framework::Tensor* x_grad) {
|
|
SoftmaxGradEigen<DeviceContext, T>()(context, axis_dim, y, y_grad, x_grad);
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SoftmaxGradFunctor<DeviceContext, T, enable_if_CPU<DeviceContext>> {
|
|
public:
|
|
void operator()(const DeviceContext& context, const int axis_dim,
|
|
const framework::Tensor* y, const framework::Tensor* y_grad,
|
|
framework::Tensor* x_grad) {
|
|
auto out_dims = y->dims();
|
|
constexpr int kBatchDim = 0;
|
|
constexpr int kClassDim = 1;
|
|
const int num_classes = out_dims[kClassDim];
|
|
const int batch_size = out_dims[kBatchDim];
|
|
const int num_remain = num_classes / axis_dim;
|
|
|
|
if (num_remain == 1 && platform::MayIUse(platform::avx)) {
|
|
const T* out_data = y->data<T>();
|
|
const T* out_grad = y_grad->data<T>();
|
|
T* in_grad = x_grad->data<T>();
|
|
for (int bs = 0; bs < batch_size; ++bs) {
|
|
T scalar;
|
|
vec_mul_reduce<T, platform::avx>(num_classes, out_grad, out_data,
|
|
&scalar);
|
|
scalar *= static_cast<T>(-1);
|
|
vec_add_bias<T, platform::avx>(num_classes, scalar, out_grad, in_grad);
|
|
vec_mul<T, platform::avx>(num_classes, out_data, in_grad, in_grad);
|
|
out_data += num_classes;
|
|
out_grad += num_classes;
|
|
in_grad += num_classes;
|
|
}
|
|
} else {
|
|
SoftmaxGradEigen<DeviceContext, T>()(context, axis_dim, y, y_grad,
|
|
x_grad);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace math
|
|
} // namespace operators
|
|
} // namespace paddle
|