You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/matmul_v2_op.cc

219 lines
7.8 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/matmul_v2_op.h"
#include <string>
#include <vector>
namespace paddle {
namespace operators {
class MatMulV2Op : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "matmul_v2");
OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "matmul_v2");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "matmul_v2");
bool trans_x = ctx->Attrs().Get<bool>("trans_x");
bool trans_y = ctx->Attrs().Get<bool>("trans_y");
std::vector<int64_t> dims_x =
paddle::framework::vectorize(ctx->GetInputDim("X"));
std::vector<int64_t> dims_y =
paddle::framework::vectorize(ctx->GetInputDim("Y"));
auto ndims_x = dims_x.size();
auto ndims_y = dims_y.size();
bool x_broadcasted = false, y_broadcasted = false;
if (ndims_x == 1) {
dims_x.insert(dims_x.begin(), 1);
ndims_x = 2;
x_broadcasted = true;
}
if (ndims_y == 1) {
dims_y.push_back(1);
ndims_y = 2;
y_broadcasted = true;
}
size_t M, N;
if (trans_x) {
M = dims_x[ndims_x - 1];
} else {
M = dims_x[ndims_x - 2];
}
if (trans_y) {
N = dims_y[ndims_y - 2];
} else {
N = dims_y[ndims_y - 1];
}
std::vector<int64_t> new_dims;
if (ndims_x >= ndims_y) {
new_dims.assign(dims_x.begin(), dims_x.end() - 2);
} else {
new_dims.assign(dims_y.begin(), dims_y.end() - 2);
}
if (!x_broadcasted) {
new_dims.push_back(M);
}
if (!y_broadcasted) {
new_dims.push_back(N);
}
if (x_broadcasted && y_broadcasted) {
new_dims.push_back(1);
}
auto out_dims = framework::make_ddim(new_dims);
ctx->SetOutputDim("Out", out_dims);
ctx->ShareLoD("X", /* --> */ "Out");
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type =
OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
return framework::OpKernelType(data_type, ctx.device_context());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string& var_name, const framework::Tensor& tensor,
const framework::OpKernelType& expected_kernel_type) const {
if (framework::IsComplexType(expected_kernel_type.data_type_)) {
// only promote inputss types when contains complex input
return framework::OpKernelType(tensor.type(), tensor.place(),
tensor.layout());
} else {
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
}
};
class MatMulV2OpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "tensor of shape (d0, d1 ... M, K)");
AddInput("Y", "tensor of shape (d0, d1 ... K, N)");
AddOutput("Out", "tensor of shape (d0, d1 ... M, N)");
AddAttr<bool>("trans_x",
"Set true to transpose the last two dimensions of X before "
"doing multiplication")
.SetDefault(false);
AddAttr<bool>("trans_y",
"Set true to transpose the last two dimensions of Y before "
"doing multiplication")
.SetDefault(false);
AddComment(
R"DOC(Matrix multiplication Out = X * Y. A has shape (d0, d1 ... M, K),
B has shape (d0, d1 ... K, N), Out has shape ((d0, d1 ... M, N)).
In addition, it also follows the broadcast rule which is similar as
numpy.matmul.
)DOC");
}
};
class MatMulV2OpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* context) const override {
OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul_v2");
OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul_v2");
OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
"Out@GRAD", "matmul_v2");
auto x_dims = context->GetInputDim("X");
auto y_dims = context->GetInputDim("Y");
auto x_grad_name = framework::GradVarName("X");
auto y_grad_name = framework::GradVarName("Y");
if (context->HasOutput(x_grad_name)) {
context->SetOutputDim(x_grad_name, x_dims);
}
if (context->HasOutput(y_grad_name)) {
context->SetOutputDim(y_grad_name, y_dims);
}
}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto out_grad_name = framework::GradVarName("Out");
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, out_grad_name),
ctx.GetPlace());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string& var_name, const framework::Tensor& tensor,
const framework::OpKernelType& expected_kernel_type) const {
if (framework::IsComplexType(expected_kernel_type.data_type_)) {
// only promote inputss types when contains complex input
return framework::OpKernelType(tensor.type(), tensor.place(),
tensor.layout());
} else {
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
}
};
template <typename T>
class MatMulV2GradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("matmul_v2_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("Y", this->Input("Y"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
op->SetAttrMap(this->Attrs());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(matmul_v2, ops::MatMulV2Op, ops::MatMulV2OpMaker,
ops::MatMulV2GradOpMaker<paddle::framework::OpDesc>,
ops::MatMulV2GradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(matmul_v2_grad, ops::MatMulV2OpGrad);
REGISTER_OP_CPU_KERNEL(
matmul_v2, ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext, float>,
ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext, double>,
ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex64>,
ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex128>);
REGISTER_OP_CPU_KERNEL(
matmul_v2_grad,
ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext, float>,
ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext, double>,
ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex64>,
ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex128>);