You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/pull_sparse_v2_op.cc

136 lines
5.2 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/pull_sparse_v2_op.h"
#include <string>
namespace paddle {
namespace operators {
class PullSparseV2Op : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_GE(ctx->Inputs("Ids").size(), 1UL,
platform::errors::InvalidArgument(
"Input(Ids) of PullSparseV2Op can not be null"));
PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL,
platform::errors::InvalidArgument(
"Output(Out) of PullSparseV2Op can not be null"));
auto hidden_size =
static_cast<uint32_t>(ctx->Attrs().Get<int>("EmbeddingDim"));
auto all_ids_dim = ctx->GetInputsDim("Ids");
const size_t n_ids = all_ids_dim.size();
std::vector<framework::DDim> outs_dims;
outs_dims.resize(n_ids);
for (size_t i = 0; i < n_ids; ++i) {
const auto ids_dims = all_ids_dim[i];
auto out_dim = framework::vectorize(ids_dims);
out_dim.push_back(hidden_size);
outs_dims[i] = framework::make_ddim(out_dim);
}
ctx->SetOutputsDim("Out", outs_dims);
for (size_t i = 0; i < n_ids; ++i) {
ctx->ShareLoD("Ids", "Out", i, i);
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(framework::proto::VarType::FP32,
ctx.device_context());
}
};
class PullSparseV2OpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Ids",
"Input tensors with type int64 contains "
"the ids to be looked up in PSLib. ")
.AsDuplicable();
AddInput("W", "The lookup table tensors.").AsDuplicable();
AddOutput("Out", "The lookup results tensors.").AsDuplicable();
AddAttr<int>("EmbeddingDim", "(int, the embedding hidden size")
.SetDefault(11);
AddAttr<int>("TableId", "(int, the table id of this embedding")
.SetDefault(0);
AddAttr<std::string>("AccessorClass", "(string, the class name of accessor")
.SetDefault("");
AddAttr<std::string>("CtrLabelName", "(string, ctr label name")
.SetDefault("");
AddAttr<int>("PaddingId", "(int, the padding id of this embedding")
.SetDefault(0);
AddAttr<bool>("ScaleSparseGrad",
"(bool, whether scale sparse gradient with batch size")
.SetDefault(true);
AddAttr<std::vector<std::string>>("InputNames", "(vector, slot names")
.SetDefault(std::vector<std::string>());
AddAttr<bool>("is_distributed", "(bool, it must be true").SetDefault(true);
AddComment(R"DOC(
Pull Sparse V2 Operator.
This operator is used to perform lookups on the PSLib
then concatenated into a dense tensor.
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.
)DOC");
}
};
template <typename T>
class PushSparseV2OpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> retv) const override {
retv->SetType("push_sparse_v2");
retv->SetInput("Ids", this->Input("Ids"));
retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
retv->SetInput("W", this->Input("W"));
retv->SetOutput(framework::GradVarName("Out"), this->OutputGrad("Out"));
retv->SetAttrMap(this->Attrs());
}
};
class PushSparseV2Op : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(pull_sparse_v2, ops::PullSparseV2Op, ops::PullSparseV2OpMaker,
ops::PushSparseV2OpMaker<paddle::framework::OpDesc>,
ops::PushSparseV2OpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(push_sparse_v2, ops::PushSparseV2Op);
REGISTER_OP_CPU_KERNEL(pull_sparse_v2, ops::PullSparseV2CPUKernel<float>)
REGISTER_OP_CPU_KERNEL(push_sparse_v2, ops::PushSparseV2CPUKernel<float>)