You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
5.2 KiB
136 lines
5.2 KiB
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/operators/pull_sparse_v2_op.h"
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class PullSparseV2Op : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_GE(ctx->Inputs("Ids").size(), 1UL,
|
|
platform::errors::InvalidArgument(
|
|
"Input(Ids) of PullSparseV2Op can not be null"));
|
|
PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL,
|
|
platform::errors::InvalidArgument(
|
|
"Output(Out) of PullSparseV2Op can not be null"));
|
|
|
|
auto hidden_size =
|
|
static_cast<uint32_t>(ctx->Attrs().Get<int>("EmbeddingDim"));
|
|
auto all_ids_dim = ctx->GetInputsDim("Ids");
|
|
const size_t n_ids = all_ids_dim.size();
|
|
std::vector<framework::DDim> outs_dims;
|
|
outs_dims.resize(n_ids);
|
|
for (size_t i = 0; i < n_ids; ++i) {
|
|
const auto ids_dims = all_ids_dim[i];
|
|
auto out_dim = framework::vectorize(ids_dims);
|
|
out_dim.push_back(hidden_size);
|
|
outs_dims[i] = framework::make_ddim(out_dim);
|
|
}
|
|
ctx->SetOutputsDim("Out", outs_dims);
|
|
for (size_t i = 0; i < n_ids; ++i) {
|
|
ctx->ShareLoD("Ids", "Out", i, i);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(framework::proto::VarType::FP32,
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class PullSparseV2OpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Ids",
|
|
"Input tensors with type int64 contains "
|
|
"the ids to be looked up in PSLib. ")
|
|
.AsDuplicable();
|
|
AddInput("W", "The lookup table tensors.").AsDuplicable();
|
|
AddOutput("Out", "The lookup results tensors.").AsDuplicable();
|
|
AddAttr<int>("EmbeddingDim", "(int, the embedding hidden size")
|
|
.SetDefault(11);
|
|
AddAttr<int>("TableId", "(int, the table id of this embedding")
|
|
.SetDefault(0);
|
|
AddAttr<std::string>("AccessorClass", "(string, the class name of accessor")
|
|
.SetDefault("");
|
|
AddAttr<std::string>("CtrLabelName", "(string, ctr label name")
|
|
.SetDefault("");
|
|
AddAttr<int>("PaddingId", "(int, the padding id of this embedding")
|
|
.SetDefault(0);
|
|
AddAttr<bool>("ScaleSparseGrad",
|
|
"(bool, whether scale sparse gradient with batch size")
|
|
.SetDefault(true);
|
|
AddAttr<std::vector<std::string>>("InputNames", "(vector, slot names")
|
|
.SetDefault(std::vector<std::string>());
|
|
AddAttr<bool>("is_distributed", "(bool, it must be true").SetDefault(true);
|
|
AddComment(R"DOC(
|
|
Pull Sparse V2 Operator.
|
|
|
|
This operator is used to perform lookups on the PSLib
|
|
then concatenated into a dense tensor.
|
|
|
|
The input Ids can carry the LoD (Level of Details) information,
|
|
or not. And the output only shares the LoD information with input Ids.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class PushSparseV2OpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> retv) const override {
|
|
retv->SetType("push_sparse_v2");
|
|
retv->SetInput("Ids", this->Input("Ids"));
|
|
retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
retv->SetInput("W", this->Input("W"));
|
|
retv->SetOutput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
retv->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
class PushSparseV2Op : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(pull_sparse_v2, ops::PullSparseV2Op, ops::PullSparseV2OpMaker,
|
|
ops::PushSparseV2OpMaker<paddle::framework::OpDesc>,
|
|
ops::PushSparseV2OpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(push_sparse_v2, ops::PushSparseV2Op);
|
|
REGISTER_OP_CPU_KERNEL(pull_sparse_v2, ops::PullSparseV2CPUKernel<float>)
|
|
REGISTER_OP_CPU_KERNEL(push_sparse_v2, ops::PushSparseV2CPUKernel<float>)
|