You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/top_k_v2_op.cu

276 lines
11 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/top_k_function_cuda.h"
#include "paddle/fluid/operators/top_k_v2_op.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
#define FIXED_BLOCK_DIM_BASE(dim, ...) \
case (dim): { \
constexpr auto kBlockDim = (dim); \
__VA_ARGS__; \
} break
#define FIXED_BLOCK_DIM(...) \
FIXED_BLOCK_DIM_BASE(256, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(128, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(64, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(32, ##__VA_ARGS__)
template <typename DeviceContext, typename T>
class TopkV2OpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE_EQ(
platform::is_gpu_place(ctx.GetPlace()), true,
platform::errors::InvalidArgument(
"It must use CUDAPlace, you must check your device set."));
auto* input = ctx.Input<Tensor>("X");
auto* output = ctx.Output<Tensor>("Out");
auto* indices = ctx.Output<Tensor>("Indices");
// get the attributes
int k = static_cast<int>(ctx.Attr<int>("k"));
int axis = static_cast<int>(ctx.Attr<int>("axis"));
const bool& sorted = static_cast<bool>(ctx.Attr<bool>("sorted"));
const bool& largest = static_cast<bool>(ctx.Attr<bool>("largest"));
// get the input dims
const auto& in_dims = input->dims();
// calcluate the real axis
if (axis < 0) axis += in_dims.size();
auto* k_t = ctx.Input<Tensor>("K");
if (k_t) {
Tensor k_host;
framework::TensorCopySync(*k_t, platform::CPUPlace(), &k_host);
k = k_host.data<int>()[0];
framework::DDim output_dims = output->dims();
output_dims[axis] = k;
output->Resize(output_dims);
indices->Resize(output_dims);
}
const auto& out_dims = output->dims();
const T* input_data = input->data<T>();
T* output_data = output->mutable_data<T>(ctx.GetPlace());
int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());
if (axis == in_dims.size() - 1) {
// if get the topK from the last axis
const int64_t& input_height = framework::product(
framework::slice_ddim(in_dims, 0, in_dims.size() - 1));
const int64_t& input_width = in_dims[in_dims.size() - 1];
const auto& dev_ctx = ctx.cuda_device_context();
if (k > input_width) k = input_width;
if ((input_width <= 1024 || k >= 128 || k == input_width)) {
if (SortTopk<T>(dev_ctx, input, input_width, input_height, k, output,
indices, largest)) {
// Successed, return.
return;
} else {
LOG(INFO) << "TopKOP: Some errors happened when use cub sorting, use "
"default topk kernel.";
}
}
// NOTE: pass lds and dim same to input width.
// NOTE: old matrix implementation of stride is different to eigen.
const int kMaxHeight = 2048;
int gridx = input_height < kMaxHeight ? input_height : kMaxHeight;
switch (GetDesiredBlockDim(input_width)) {
FIXED_BLOCK_DIM(
KeMatrixTopK<T, 5,
kBlockDim><<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(
output_data, k, indices_data, input_data, input_width,
input_width, static_cast<int>(k), gridx, input_height,
largest));
default:
PADDLE_THROW(platform::errors::Fatal(
"the input data shape has error in the topk cuda kernel."));
}
} else {
// if get topK not from the last axis, will tranpose the tensor and get
// TopK
// first step, prepare the trans args for the tranpose
std::vector<int> trans;
for (int i = 0; i < axis; i++) {
trans.emplace_back(i);
}
trans.emplace_back(in_dims.size() - 1);
for (int i = axis + 1; i < in_dims.size() - 1; i++) {
trans.emplace_back(i);
}
trans.emplace_back(axis);
framework::DDim trans_dims(in_dims);
framework::DDim trans_out_dims(output->dims());
for (int i = 0; i < trans.size(); i++) {
trans_dims[i] = in_dims[trans[i]];
trans_out_dims[i] = out_dims[trans[i]];
}
// second step, tranpose the input
Tensor trans_input;
trans_input.mutable_data<T>(trans_dims, ctx.GetPlace());
int ndims = trans.size();
const auto& dev_ctx = ctx.cuda_device_context();
TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, *input,
&trans_input, trans);
// third step, calcluate the topk
// allocate the tmp cuda memory for the tmp result
Tensor trans_ind;
trans_ind.mutable_data<int64_t>(trans_out_dims, ctx.GetPlace());
Tensor trans_out;
trans_out.mutable_data<T>(trans_out_dims, ctx.GetPlace());
const int64_t input_height = framework::product(
framework::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
const int64_t input_width = trans_dims[trans_dims.size() - 1];
if (k > input_width) k = input_width;
if (((input_width <= 1024 && input_height <= 2048) || k >= 128 ||
k == input_width)) {
if (SortTopk<T>(dev_ctx, &trans_input, input_width, input_height, k,
&trans_out, &trans_ind, largest)) {
// last step, tranpose back the indices and output
TransCompute<platform::CUDADeviceContext, int64_t>(
ndims, dev_ctx, trans_ind, indices, trans);
TransCompute<platform::CUDADeviceContext, T>(
ndims, dev_ctx, trans_out, output, trans);
return;
} else {
LOG(INFO) << "TopKOP: Some errors happened when use cub sorting, use "
"default topk kernel.";
}
}
const int kMaxHeight = 2048;
int gridx = input_height < kMaxHeight ? input_height : kMaxHeight;
switch (GetDesiredBlockDim(input_width)) {
FIXED_BLOCK_DIM(
KeMatrixTopK<T, 5,
kBlockDim><<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(
trans_out.data<T>(), k, trans_ind.data<int64_t>(),
trans_input.data<T>(), input_width, input_width,
static_cast<int>(k), gridx, input_height, largest));
default:
PADDLE_THROW(platform::errors::Fatal(
"the input data shape has error in the topk cuda kernel."));
}
// last step, tranpose back the indices and output
TransCompute<platform::CUDADeviceContext, int64_t>(
ndims, dev_ctx, trans_ind, indices, trans);
TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, trans_out,
output, trans);
}
}
};
#undef FIXED_BLOCK_DIM_BASE
#undef FIXED_BLOCK_DIM
template <typename DeviceContext, typename T>
class TopkV2OpGradCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE_EQ(
platform::is_gpu_place(context.GetPlace()), true,
platform::errors::InvalidArgument(
"It must use CUDAPlace, you must check your device set."));
auto* x = context.Input<Tensor>("X");
auto* out_grad = context.Input<Tensor>(framework::GradVarName("Out"));
auto* indices = context.Input<Tensor>("Indices");
auto* x_grad = context.Output<Tensor>(framework::GradVarName("X"));
int axis = context.Attr<int>("axis");
const auto& in_dims = x->dims();
const auto& out_dims = indices->dims();
// get the real the axis and the k
if (axis < 0) axis += in_dims.size();
const int& k = out_dims[axis];
const int& raw_height = in_dims[axis];
// allocate the cuda memory for the x_grad
T* x_grad_data = x_grad->mutable_data<T>(context.GetPlace());
const T* out_grad_data = out_grad->data<T>();
const int64_t* indices_data = indices->data<int64_t>();
int pre, n, post;
GetDims(in_dims, axis, &pre, &n, &post);
// calcluate the block and grid num
auto& dev_ctx = context.cuda_device_context();
auto ComputeBlockSize = [](int col) {
if (col > 512)
return 1024;
else if (col > 256 && col <= 512)
return 512;
else if (col > 128 && col <= 256)
return 256;
else if (col > 64 && col <= 128)
return 128;
else
return 64;
};
int block_size = ComputeBlockSize(post * k);
int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
const int max_blocks = std::max(((max_threads - 1) / block_size + 1), 1);
int grid_size = std::min(max_blocks, pre);
// lanuch the cuda kernel to assign the grad
AssignGradWithAxis<T><<<grid_size, block_size, 64 * 4, dev_ctx.stream()>>>(
out_grad_data, indices_data, x_grad_data, pre, post, n, k);
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_CUDA_KERNEL(
top_k_v2,
paddle::operators::TopkV2OpCUDAKernel<paddle::platform::CUDADeviceContext,
float>,
paddle::operators::TopkV2OpCUDAKernel<paddle::platform::CUDADeviceContext,
double>,
paddle::operators::TopkV2OpCUDAKernel<paddle::platform::CUDADeviceContext,
int>,
paddle::operators::TopkV2OpCUDAKernel<paddle::platform::CUDADeviceContext,
int64_t>,
paddle::operators::TopkV2OpCUDAKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>);
REGISTER_OP_CUDA_KERNEL(
top_k_v2_grad, paddle::operators::TopkV2OpGradCUDAKernel<
paddle::platform::CUDADeviceContext, float>,
paddle::operators::TopkV2OpGradCUDAKernel<
paddle::platform::CUDADeviceContext, double>,
paddle::operators::TopkV2OpGradCUDAKernel<
paddle::platform::CUDADeviceContext, int>,
paddle::operators::TopkV2OpGradCUDAKernel<
paddle::platform::CUDADeviceContext, int64_t>,
paddle::operators::TopkV2OpGradCUDAKernel<
paddle::platform::CUDADeviceContext, paddle::platform::float16>);