You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
276 lines
11 KiB
276 lines
11 KiB
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/top_k_function_cuda.h"
|
|
#include "paddle/fluid/operators/top_k_v2_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
#define FIXED_BLOCK_DIM_BASE(dim, ...) \
|
|
case (dim): { \
|
|
constexpr auto kBlockDim = (dim); \
|
|
__VA_ARGS__; \
|
|
} break
|
|
|
|
#define FIXED_BLOCK_DIM(...) \
|
|
FIXED_BLOCK_DIM_BASE(256, ##__VA_ARGS__); \
|
|
FIXED_BLOCK_DIM_BASE(128, ##__VA_ARGS__); \
|
|
FIXED_BLOCK_DIM_BASE(64, ##__VA_ARGS__); \
|
|
FIXED_BLOCK_DIM_BASE(32, ##__VA_ARGS__)
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class TopkV2OpCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
platform::is_gpu_place(ctx.GetPlace()), true,
|
|
platform::errors::InvalidArgument(
|
|
"It must use CUDAPlace, you must check your device set."));
|
|
auto* input = ctx.Input<Tensor>("X");
|
|
auto* output = ctx.Output<Tensor>("Out");
|
|
auto* indices = ctx.Output<Tensor>("Indices");
|
|
|
|
// get the attributes
|
|
int k = static_cast<int>(ctx.Attr<int>("k"));
|
|
int axis = static_cast<int>(ctx.Attr<int>("axis"));
|
|
const bool& sorted = static_cast<bool>(ctx.Attr<bool>("sorted"));
|
|
const bool& largest = static_cast<bool>(ctx.Attr<bool>("largest"));
|
|
|
|
// get the input dims
|
|
const auto& in_dims = input->dims();
|
|
// calcluate the real axis
|
|
if (axis < 0) axis += in_dims.size();
|
|
|
|
auto* k_t = ctx.Input<Tensor>("K");
|
|
if (k_t) {
|
|
Tensor k_host;
|
|
framework::TensorCopySync(*k_t, platform::CPUPlace(), &k_host);
|
|
k = k_host.data<int>()[0];
|
|
framework::DDim output_dims = output->dims();
|
|
output_dims[axis] = k;
|
|
output->Resize(output_dims);
|
|
indices->Resize(output_dims);
|
|
}
|
|
|
|
const auto& out_dims = output->dims();
|
|
|
|
const T* input_data = input->data<T>();
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());
|
|
|
|
if (axis == in_dims.size() - 1) {
|
|
// if get the topK from the last axis
|
|
const int64_t& input_height = framework::product(
|
|
framework::slice_ddim(in_dims, 0, in_dims.size() - 1));
|
|
const int64_t& input_width = in_dims[in_dims.size() - 1];
|
|
const auto& dev_ctx = ctx.cuda_device_context();
|
|
|
|
if (k > input_width) k = input_width;
|
|
|
|
if ((input_width <= 1024 || k >= 128 || k == input_width)) {
|
|
if (SortTopk<T>(dev_ctx, input, input_width, input_height, k, output,
|
|
indices, largest)) {
|
|
// Successed, return.
|
|
return;
|
|
} else {
|
|
LOG(INFO) << "TopKOP: Some errors happened when use cub sorting, use "
|
|
"default topk kernel.";
|
|
}
|
|
}
|
|
|
|
// NOTE: pass lds and dim same to input width.
|
|
// NOTE: old matrix implementation of stride is different to eigen.
|
|
const int kMaxHeight = 2048;
|
|
int gridx = input_height < kMaxHeight ? input_height : kMaxHeight;
|
|
switch (GetDesiredBlockDim(input_width)) {
|
|
FIXED_BLOCK_DIM(
|
|
KeMatrixTopK<T, 5,
|
|
kBlockDim><<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(
|
|
output_data, k, indices_data, input_data, input_width,
|
|
input_width, static_cast<int>(k), gridx, input_height,
|
|
largest));
|
|
default:
|
|
PADDLE_THROW(platform::errors::Fatal(
|
|
"the input data shape has error in the topk cuda kernel."));
|
|
}
|
|
} else {
|
|
// if get topK not from the last axis, will tranpose the tensor and get
|
|
// TopK
|
|
|
|
// first step, prepare the trans args for the tranpose
|
|
std::vector<int> trans;
|
|
for (int i = 0; i < axis; i++) {
|
|
trans.emplace_back(i);
|
|
}
|
|
trans.emplace_back(in_dims.size() - 1);
|
|
for (int i = axis + 1; i < in_dims.size() - 1; i++) {
|
|
trans.emplace_back(i);
|
|
}
|
|
trans.emplace_back(axis);
|
|
|
|
framework::DDim trans_dims(in_dims);
|
|
framework::DDim trans_out_dims(output->dims());
|
|
for (int i = 0; i < trans.size(); i++) {
|
|
trans_dims[i] = in_dims[trans[i]];
|
|
trans_out_dims[i] = out_dims[trans[i]];
|
|
}
|
|
// second step, tranpose the input
|
|
Tensor trans_input;
|
|
trans_input.mutable_data<T>(trans_dims, ctx.GetPlace());
|
|
int ndims = trans.size();
|
|
const auto& dev_ctx = ctx.cuda_device_context();
|
|
TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, *input,
|
|
&trans_input, trans);
|
|
// third step, calcluate the topk
|
|
// allocate the tmp cuda memory for the tmp result
|
|
Tensor trans_ind;
|
|
trans_ind.mutable_data<int64_t>(trans_out_dims, ctx.GetPlace());
|
|
Tensor trans_out;
|
|
trans_out.mutable_data<T>(trans_out_dims, ctx.GetPlace());
|
|
|
|
const int64_t input_height = framework::product(
|
|
framework::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
|
|
const int64_t input_width = trans_dims[trans_dims.size() - 1];
|
|
|
|
if (k > input_width) k = input_width;
|
|
|
|
if (((input_width <= 1024 && input_height <= 2048) || k >= 128 ||
|
|
k == input_width)) {
|
|
if (SortTopk<T>(dev_ctx, &trans_input, input_width, input_height, k,
|
|
&trans_out, &trans_ind, largest)) {
|
|
// last step, tranpose back the indices and output
|
|
TransCompute<platform::CUDADeviceContext, int64_t>(
|
|
ndims, dev_ctx, trans_ind, indices, trans);
|
|
TransCompute<platform::CUDADeviceContext, T>(
|
|
ndims, dev_ctx, trans_out, output, trans);
|
|
return;
|
|
} else {
|
|
LOG(INFO) << "TopKOP: Some errors happened when use cub sorting, use "
|
|
"default topk kernel.";
|
|
}
|
|
}
|
|
|
|
const int kMaxHeight = 2048;
|
|
int gridx = input_height < kMaxHeight ? input_height : kMaxHeight;
|
|
switch (GetDesiredBlockDim(input_width)) {
|
|
FIXED_BLOCK_DIM(
|
|
KeMatrixTopK<T, 5,
|
|
kBlockDim><<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(
|
|
trans_out.data<T>(), k, trans_ind.data<int64_t>(),
|
|
trans_input.data<T>(), input_width, input_width,
|
|
static_cast<int>(k), gridx, input_height, largest));
|
|
default:
|
|
PADDLE_THROW(platform::errors::Fatal(
|
|
"the input data shape has error in the topk cuda kernel."));
|
|
}
|
|
|
|
// last step, tranpose back the indices and output
|
|
TransCompute<platform::CUDADeviceContext, int64_t>(
|
|
ndims, dev_ctx, trans_ind, indices, trans);
|
|
TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, trans_out,
|
|
output, trans);
|
|
}
|
|
}
|
|
};
|
|
|
|
#undef FIXED_BLOCK_DIM_BASE
|
|
#undef FIXED_BLOCK_DIM
|
|
template <typename DeviceContext, typename T>
|
|
class TopkV2OpGradCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
platform::is_gpu_place(context.GetPlace()), true,
|
|
platform::errors::InvalidArgument(
|
|
"It must use CUDAPlace, you must check your device set."));
|
|
auto* x = context.Input<Tensor>("X");
|
|
auto* out_grad = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* indices = context.Input<Tensor>("Indices");
|
|
auto* x_grad = context.Output<Tensor>(framework::GradVarName("X"));
|
|
int axis = context.Attr<int>("axis");
|
|
|
|
const auto& in_dims = x->dims();
|
|
const auto& out_dims = indices->dims();
|
|
|
|
// get the real the axis and the k
|
|
if (axis < 0) axis += in_dims.size();
|
|
const int& k = out_dims[axis];
|
|
const int& raw_height = in_dims[axis];
|
|
|
|
// allocate the cuda memory for the x_grad
|
|
T* x_grad_data = x_grad->mutable_data<T>(context.GetPlace());
|
|
const T* out_grad_data = out_grad->data<T>();
|
|
const int64_t* indices_data = indices->data<int64_t>();
|
|
|
|
int pre, n, post;
|
|
GetDims(in_dims, axis, &pre, &n, &post);
|
|
|
|
// calcluate the block and grid num
|
|
auto& dev_ctx = context.cuda_device_context();
|
|
auto ComputeBlockSize = [](int col) {
|
|
if (col > 512)
|
|
return 1024;
|
|
else if (col > 256 && col <= 512)
|
|
return 512;
|
|
else if (col > 128 && col <= 256)
|
|
return 256;
|
|
else if (col > 64 && col <= 128)
|
|
return 128;
|
|
else
|
|
return 64;
|
|
};
|
|
int block_size = ComputeBlockSize(post * k);
|
|
int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
|
|
const int max_blocks = std::max(((max_threads - 1) / block_size + 1), 1);
|
|
int grid_size = std::min(max_blocks, pre);
|
|
|
|
// lanuch the cuda kernel to assign the grad
|
|
AssignGradWithAxis<T><<<grid_size, block_size, 64 * 4, dev_ctx.stream()>>>(
|
|
out_grad_data, indices_data, x_grad_data, pre, post, n, k);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
top_k_v2,
|
|
paddle::operators::TopkV2OpCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
float>,
|
|
paddle::operators::TopkV2OpCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
double>,
|
|
paddle::operators::TopkV2OpCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
int>,
|
|
paddle::operators::TopkV2OpCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
int64_t>,
|
|
paddle::operators::TopkV2OpCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
paddle::platform::float16>);
|
|
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
top_k_v2_grad, paddle::operators::TopkV2OpGradCUDAKernel<
|
|
paddle::platform::CUDADeviceContext, float>,
|
|
paddle::operators::TopkV2OpGradCUDAKernel<
|
|
paddle::platform::CUDADeviceContext, double>,
|
|
paddle::operators::TopkV2OpGradCUDAKernel<
|
|
paddle::platform::CUDADeviceContext, int>,
|
|
paddle::operators::TopkV2OpGradCUDAKernel<
|
|
paddle::platform::CUDADeviceContext, int64_t>,
|
|
paddle::operators::TopkV2OpGradCUDAKernel<
|
|
paddle::platform::CUDADeviceContext, paddle::platform::float16>);
|