You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/contrib/tests/test_image_classification_f...

460 lines
17 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import contextlib
import math
import sys
import numpy
import unittest
import os
import copy
import numpy as np
from paddle.static.amp import decorate
paddle.enable_static()
def resnet_cifar10(input, depth=32):
def conv_bn_layer(input,
ch_out,
filter_size,
stride,
padding,
act='relu',
bias_attr=False):
tmp = fluid.layers.conv2d(
input=input,
filter_size=filter_size,
num_filters=ch_out,
stride=stride,
padding=padding,
act=None,
bias_attr=bias_attr)
return fluid.layers.batch_norm(input=tmp, act=act)
def shortcut(input, ch_in, ch_out, stride):
if ch_in != ch_out:
return conv_bn_layer(input, ch_out, 1, stride, 0, None)
else:
return input
def basicblock(input, ch_in, ch_out, stride):
tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None, bias_attr=True)
short = shortcut(input, ch_in, ch_out, stride)
return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')
def layer_warp(block_func, input, ch_in, ch_out, count, stride):
tmp = block_func(input, ch_in, ch_out, stride)
for i in range(1, count):
tmp = block_func(tmp, ch_out, ch_out, 1)
return tmp
assert (depth - 2) % 6 == 0
n = (depth - 2) // 6
conv1 = conv_bn_layer(
input=input, ch_out=16, filter_size=3, stride=1, padding=1)
res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
pool = fluid.layers.pool2d(
input=res3, pool_size=8, pool_type='avg', pool_stride=1)
return pool
def vgg16_bn_drop(input):
def conv_block(input, num_filter, groups, dropouts):
return fluid.nets.img_conv_group(
input=input,
pool_size=2,
pool_stride=2,
conv_num_filter=[num_filter] * groups,
conv_filter_size=3,
conv_act='relu',
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type='max')
conv1 = conv_block(input, 64, 2, [0.3, 0])
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
fc1 = fluid.layers.fc(input=drop, size=4096, act=None)
bn = fluid.layers.batch_norm(input=fc1, act='relu')
drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
fc2 = fluid.layers.fc(input=drop2, size=4096, act=None)
return fc2
def train(net_type, use_cuda, save_dirname, is_local):
classdim = 10
data_shape = [3, 32, 32]
train_program = fluid.Program()
startup_prog = fluid.Program()
train_program.random_seed = 123
startup_prog.random_seed = 456
with fluid.program_guard(train_program, startup_prog):
images = fluid.layers.data(
name='pixel', shape=data_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
if net_type == "vgg":
print("train vgg net")
net = vgg16_bn_drop(images)
elif net_type == "resnet":
print("train resnet")
net = resnet_cifar10(images, 32)
else:
raise ValueError("%s network is not supported" % net_type)
logits = fluid.layers.fc(input=net, size=classdim, act="softmax")
cost, predict = fluid.layers.softmax_with_cross_entropy(
logits, label, return_softmax=True)
avg_cost = fluid.layers.mean(cost)
acc = fluid.layers.accuracy(input=predict, label=label)
# Test program
test_program = train_program.clone(for_test=True)
optimizer = fluid.optimizer.Lamb(learning_rate=0.001)
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
custom_black_varnames={"loss", "conv2d_0.w_0"})
mp_optimizer = decorate(
optimizer=optimizer,
amp_lists=amp_lists,
init_loss_scaling=8.0,
use_dynamic_loss_scaling=True)
mp_optimizer.minimize(avg_cost)
loss_scaling = mp_optimizer.get_loss_scaling()
scaled_loss = mp_optimizer.get_scaled_loss()
BATCH_SIZE = 128
PASS_NUM = 1
# no shuffle for unit test
train_reader = paddle.batch(
paddle.dataset.cifar.train10(), batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
def train_loop(main_program):
exe.run(startup_prog)
loss = 0.0
for pass_id in range(PASS_NUM):
for batch_id, data in enumerate(train_reader()):
np_scaled_loss, loss = exe.run(
main_program,
feed=feeder.feed(data),
fetch_list=[scaled_loss, avg_cost])
print(
'PassID {0:1}, BatchID {1:04}, train loss {2:2.4}, scaled train closs {3:2.4}'.
format(pass_id, batch_id + 1,
float(loss), float(np_scaled_loss)))
if (batch_id % 10) == 0:
acc_list = []
avg_loss_list = []
for tid, test_data in enumerate(test_reader()):
loss_t, acc_t = exe.run(program=test_program,
feed=feeder.feed(test_data),
fetch_list=[avg_cost, acc])
if math.isnan(float(loss_t)):
sys.exit("got NaN loss, training failed.")
acc_list.append(float(acc_t))
avg_loss_list.append(float(loss_t))
break # Use 1 segment for speeding up CI
acc_value = numpy.array(acc_list).mean()
avg_loss_value = numpy.array(avg_loss_list).mean()
print(
'PassID {0:1}, BatchID {1:04}, test loss {2:2.2}, acc {3:2.2}'.
format(pass_id, batch_id + 1,
float(avg_loss_value), float(acc_value)))
if acc_value > 0.08: # Low threshold for speeding up CI
fluid.io.save_inference_model(
save_dirname, ["pixel"], [predict],
exe,
main_program=train_program)
return
if is_local:
train_loop(train_program)
else:
port = os.getenv("PADDLE_PSERVER_PORT", "6174")
pserver_ips = os.getenv("PADDLE_PSERVER_IPS") # ip,ip...
eplist = []
for ip in pserver_ips.split(","):
eplist.append(':'.join([ip, port]))
pserver_endpoints = ",".join(eplist) # ip:port,ip:port...
trainers = int(os.getenv("PADDLE_TRAINERS"))
current_endpoint = os.getenv("POD_IP") + ":" + port
trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
t = fluid.DistributeTranspiler()
t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
if training_role == "PSERVER":
pserver_prog = t.get_pserver_program(current_endpoint)
pserver_startup = t.get_startup_program(current_endpoint,
pserver_prog)
exe.run(pserver_startup)
exe.run(pserver_prog)
elif training_role == "TRAINER":
train_loop(t.get_trainer_program())
def infer(use_cuda, save_dirname=None):
if save_dirname is None:
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be fed
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
# The input's dimension of conv should be 4-D or 5-D.
# Use normilized image pixels as input data, which should be in the range [0, 1.0].
batch_size = 1
tensor_img = numpy.random.rand(batch_size, 3, 32, 32).astype("float32")
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
print("infer results: ", results[0])
fluid.io.save_inference_model(save_dirname, feed_target_names,
fetch_targets, exe, inference_program)
def main(net_type, use_cuda, is_local=True):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
# Directory for saving the trained model
save_dirname = "image_classification_" + net_type + ".inference.model"
train(net_type, use_cuda, save_dirname, is_local)
#infer(use_cuda, save_dirname)
class TestImageClassification(unittest.TestCase):
def test_amp_lists(self):
white_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.white_list)
black_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.black_list)
gray_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.gray_list)
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists()
self.assertEqual(amp_lists.white_list, white_list)
self.assertEqual(amp_lists.black_list, black_list)
self.assertEqual(amp_lists.gray_list, gray_list)
def test_amp_lists_1(self):
white_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.white_list)
black_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.black_list)
gray_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.gray_list)
# 1. w={'exp}, b=None
white_list.add('exp')
black_list.remove('exp')
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
{'exp'})
self.assertEqual(amp_lists.white_list, white_list)
self.assertEqual(amp_lists.black_list, black_list)
self.assertEqual(amp_lists.gray_list, gray_list)
def test_amp_lists_2(self):
white_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.white_list)
black_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.black_list)
gray_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.gray_list)
# 2. w={'tanh'}, b=None
white_list.add('tanh')
gray_list.remove('tanh')
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
{'tanh'})
self.assertEqual(amp_lists.white_list, white_list)
self.assertEqual(amp_lists.black_list, black_list)
self.assertEqual(amp_lists.gray_list, gray_list)
def test_amp_lists_3(self):
white_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.white_list)
black_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.black_list)
gray_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.gray_list)
# 3. w={'lstm'}, b=None
white_list.add('lstm')
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
{'lstm'})
self.assertEqual(amp_lists.white_list, white_list)
self.assertEqual(amp_lists.black_list, black_list)
self.assertEqual(amp_lists.gray_list, gray_list)
def test_amp_lists_4(self):
white_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.white_list)
black_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.black_list)
gray_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.gray_list)
# 4. w=None, b={'conv2d'}
white_list.remove('conv2d')
black_list.add('conv2d')
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
custom_black_list={'conv2d'})
self.assertEqual(amp_lists.white_list, white_list)
self.assertEqual(amp_lists.black_list, black_list)
self.assertEqual(amp_lists.gray_list, gray_list)
def test_amp_lists_5(self):
white_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.white_list)
black_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.black_list)
gray_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.gray_list)
# 5. w=None, b={'tanh'}
black_list.add('tanh')
gray_list.remove('tanh')
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
custom_black_list={'tanh'})
self.assertEqual(amp_lists.white_list, white_list)
self.assertEqual(amp_lists.black_list, black_list)
self.assertEqual(amp_lists.gray_list, gray_list)
def test_amp_lists_6(self):
white_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.white_list)
black_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.black_list)
gray_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.gray_list)
# 6. w=None, b={'lstm'}
black_list.add('lstm')
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
custom_black_list={'lstm'})
self.assertEqual(amp_lists.white_list, white_list)
self.assertEqual(amp_lists.black_list, black_list)
self.assertEqual(amp_lists.gray_list, gray_list)
def test_amp_lists_7(self):
# 7. w={'lstm'} b={'lstm'}
# raise ValueError
self.assertRaises(ValueError,
fluid.contrib.mixed_precision.AutoMixedPrecisionLists,
{'lstm'}, {'lstm'})
def test_vgg_cuda(self):
with self.scope_prog_guard():
main('vgg', use_cuda=True)
def test_resnet_cuda(self):
with self.scope_prog_guard():
main('resnet', use_cuda=True)
@contextlib.contextmanager
def scope_prog_guard(self):
prog = fluid.Program()
startup_prog = fluid.Program()
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
with fluid.program_guard(prog, startup_prog):
yield
class TestAmpWithNonIterableDataLoader(unittest.TestCase):
def decorate_with_data_loader(self):
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
with paddle.fluid.unique_name.guard():
image = fluid.layers.data(
name='image', shape=[3, 224, 224], dtype='float32')
label = fluid.layers.data(
name='label', shape=[1], dtype='int64')
py_reader = fluid.io.DataLoader.from_generator(
feed_list=[image, label],
capacity=4,
iterable=False,
use_double_buffer=False)
net = vgg16_bn_drop(image)
logits = fluid.layers.fc(input=net, size=10, act="softmax")
cost, predict = fluid.layers.softmax_with_cross_entropy(
logits, label, return_softmax=True)
avg_cost = fluid.layers.mean(cost)
optimizer = fluid.optimizer.Lamb(learning_rate=0.001)
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
custom_black_varnames={"loss", "conv2d_0.w_0"})
mp_optimizer = decorate(
optimizer=optimizer,
amp_lists=amp_lists,
init_loss_scaling=8.0,
use_dynamic_loss_scaling=True)
mp_optimizer.minimize(avg_cost)
def test_non_iterable_dataloader(self):
self.decorate_with_data_loader()
if __name__ == '__main__':
unittest.main()