You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/trainer_factory.py

195 lines
8.3 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defination of TrainerFactory."""
import threading
import time
import logging
import numpy as np
from paddle.fluid.log_helper import get_logger
local_logger = get_logger(
__name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
from .trainer_desc import MultiTrainer, DistMultiTrainer, PipelineTrainer, HeterXpuTrainer, HeterBoxTrainer, PSGPUTrainer
from .device_worker import Hogwild, DownpourSGD, Section, DownpourSGDOPT
from .framework import Variable
from multiprocessing import Process, Manager
__all__ = ["TrainerFactory", "FetchHandler", "FetchHandlerMonitor"]
class TrainerFactory(object):
"""
Create trainer and device worker.
If opt_info is not None, it will get configs from opt_info,
otherwise create MultiTrainer and Hogwild.
"""
def __init__(self):
pass
def _create_trainer(self, opt_info=None):
trainer = None
device_worker = None
if not opt_info:
# default is MultiTrainer + Hogwild
trainer = MultiTrainer()
device_worker = Hogwild()
trainer._set_device_worker(device_worker)
else:
trainer_class = opt_info["trainer"]
device_worker_class = opt_info["device_worker"]
trainer = globals()[trainer_class]()
device_worker = globals()[device_worker_class]()
# for debug tools
if opt_info is not None:
if opt_info.get("dump_slot") is not None:
trainer._set_dump_slot(opt_info["dump_slot"])
if opt_info.get("mpi_rank") is not None:
trainer._set_mpi_rank(opt_info["mpi_rank"])
if opt_info.get("mpi_size") is not None:
trainer._set_mpi_size(opt_info["mpi_size"])
if opt_info.get("dump_fields") is not None and len(
opt_info.get("dump_fields")) != 0:
trainer._set_dump_fields(opt_info["dump_fields"])
if opt_info.get("dump_fields_path") is not None and len(
opt_info.get("dump_fields_path")) != 0:
trainer._set_dump_fields_path(opt_info["dump_fields_path"])
if opt_info.get("dump_file_num") is not None:
trainer._set_dump_file_num(opt_info["dump_file_num"])
if opt_info.get("dump_converter") is not None:
trainer._set_dump_converter(opt_info["dump_converter"])
if opt_info.get("dump_param") is not None and len(
opt_info.get("dump_param")) != 0:
trainer._set_dump_param(opt_info["dump_param"])
if opt_info.get("worker_places") is not None:
trainer._set_worker_places(opt_info["worker_places"])
if opt_info.get("use_ps_gpu") is not None:
trainer._set_use_ps_gpu(opt_info["use_ps_gpu"])
if opt_info.get("enable_random_dump") is not None:
trainer._set_enable_random_dump(opt_info[
"enable_random_dump"])
if opt_info.get("dump_interval") is not None:
trainer._set_dump_interval(opt_info["dump_interval"])
if opt_info.get("random_with_lineid") is not None:
trainer._set_random_with_lineid(opt_info[
"random_with_lineid"])
if "fleet_desc" in opt_info:
device_worker._set_fleet_desc(opt_info["fleet_desc"])
trainer._set_fleet_desc(opt_info["fleet_desc"])
if opt_info.get("use_cvm") is not None:
trainer._set_use_cvm(opt_info["use_cvm"])
if opt_info.get("no_cvm") is not None:
trainer._set_no_cvm(opt_info["no_cvm"])
if opt_info.get("scale_datanorm") is not None:
trainer._set_scale_datanorm(opt_info["scale_datanorm"])
if opt_info.get("adjust_ins_weight") is not None:
trainer._set_adjust_ins_weight(opt_info[
"adjust_ins_weight"])
if opt_info.get("copy_table") is not None:
trainer._set_copy_table_config(opt_info["copy_table"])
if opt_info.get("check_nan_var_names") is not None:
trainer._set_check_nan_var_names(opt_info[
"check_nan_var_names"])
if opt_info.get("loss_names") is not None:
trainer._set_loss_names(opt_info["loss_names"])
trainer._set_device_worker(device_worker)
return trainer
class FetchHandlerMonitor(object):
"""
Defination of FetchHandlerMonitor class,
it's for fetch handler.
"""
def __init__(self, scope, handler):
self.fetch_instance = handler
self.fetch_thread = threading.Thread(
target=self.handler_launch_func, args=(scope, self.fetch_instance))
self.running_lock = threading.Lock()
self.running = False
def handler_launch_func(self, scope, handler):
fetch_instance = handler
period_secs = fetch_instance.period_secs
var_name_to_key = {}
for key in fetch_instance.var_dict:
if isinstance(fetch_instance.var_dict[key], Variable):
var_name_to_key[fetch_instance.var_dict[key].name] = key
else:
local_logger.warning("the value of {} is not a Variable".format(
key))
var_name_to_key["None.var"] = key
elapsed_secs = 0
while True:
self.running_lock.acquire()
if self.running == False:
break
if elapsed_secs < period_secs:
# TODO(guru4elephant): needs customized condition
time.sleep(1)
elapsed_secs += 1
else:
elapsed_secs = 0
fetch_dict = {}
for key in var_name_to_key:
var = scope.find_var(key)
fetch_dict[key] = var
if var == None:
local_logger.warning("{} value currently not available".
format(var_name_to_key[key]))
res_dict = {}
for key in fetch_dict:
user_name = var_name_to_key[key]
if fetch_dict[key] == None:
res_dict[user_name] = None
continue
else:
res_dict[user_name] = fetch_dict[key].get_tensor()
lod = res_dict[user_name].lod()
if len(lod) > 0:
raise RuntimeError("Some of your fetched tensors \
hold LoD information. \
They can not be completely cast \
to Python ndarray. We can \
not return LoDTensor itself directly, \
please choose another targets")
if res_dict[user_name]._is_initialized():
res_dict[user_name] = np.array(res_dict[user_name])
else:
res_dict[user_name] = None
fetch_instance.handler(res_dict)
self.running_lock.release()
def start(self):
"""
start monitor,
it will start a monitor thread.
"""
self.running_lock.acquire()
self.running = True
self.running_lock.release()
self.fetch_thread.setDaemon(True)
self.fetch_thread.start()
def stop(self):
self.running_lock.acquire()
self.running = False
self.running_lock.release()