You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
299 lines
12 KiB
299 lines
12 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h"
|
|
#include <functional>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
#include "paddle/fluid/operators/math/cpu_vec.h"
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
namespace ir {
|
|
|
|
#define GET_CONV_BN_NODES(pattern_name) \
|
|
/* OPERATORS */ \
|
|
GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name); \
|
|
GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name); \
|
|
/* CONV inputs */ \
|
|
GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name); \
|
|
/* CONV outputs */ \
|
|
GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name); \
|
|
/* BN inputs */ \
|
|
GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name); \
|
|
GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name); \
|
|
GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name); \
|
|
GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name); \
|
|
/* BN outputs */ \
|
|
GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name); /* Out */ \
|
|
GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name); \
|
|
GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \
|
|
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name); \
|
|
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)
|
|
|
|
void recompute_bias_and_weights(const Scope* scope,
|
|
ir::Node* conv_weight, //
|
|
const ir::Node& bn_scale, //
|
|
const LoDTensor& bn_bias_tensor, //
|
|
const ir::Node& bn_mean, //
|
|
const ir::Node& bn_variance, //
|
|
LoDTensor* eltwise_y_in_tensor, //
|
|
float epsilon) {
|
|
using EigenVectorArrayMap =
|
|
Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
|
|
using ConstEigenVectorArrayMap =
|
|
Eigen::Map<const Eigen::Array<float, Eigen::Dynamic, 1>>;
|
|
using EigenMatrixArrayMap = Eigen::Map<
|
|
Eigen::Array<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;
|
|
|
|
// Re-compute bias of conv2d from BN
|
|
PADDLE_ENFORCE_EQ(eltwise_y_in_tensor->dims(), bn_bias_tensor.dims());
|
|
|
|
auto* scale_tensor = scope->FindVar(bn_scale.Name())->GetMutable<LoDTensor>();
|
|
auto* variance_tensor =
|
|
scope->FindVar(bn_variance.Name())->GetMutable<LoDTensor>();
|
|
auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable<LoDTensor>();
|
|
|
|
ConstEigenVectorArrayMap scale_array(scale_tensor->data<float>(),
|
|
scale_tensor->numel(), 1);
|
|
EigenVectorArrayMap variance_array(
|
|
variance_tensor->mutable_data<float>(platform::CPUPlace()),
|
|
variance_tensor->numel(), 1);
|
|
ConstEigenVectorArrayMap mean_array(mean_tensor->data<float>(),
|
|
mean_tensor->numel(), 1);
|
|
ConstEigenVectorArrayMap bn_bias_array(bn_bias_tensor.data<float>(),
|
|
bn_bias_tensor.numel(), 1);
|
|
|
|
// variance will not be used anymore, so make it std_array and then tmp_array
|
|
variance_array += epsilon;
|
|
variance_array = variance_array.sqrt();
|
|
variance_array = scale_array / variance_array;
|
|
|
|
EigenVectorArrayMap eltwise_y_in_array(
|
|
eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
|
|
eltwise_y_in_tensor->numel(), 1);
|
|
|
|
eltwise_y_in_array =
|
|
((eltwise_y_in_array - mean_array) * variance_array) + bn_bias_array;
|
|
|
|
// Re-compute weight of conv2d from BN
|
|
auto* weights = scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
|
|
auto weights_shape = weights->dims();
|
|
auto weights_shape_2d = flatten_to_2d(weights_shape, 1);
|
|
|
|
EigenMatrixArrayMap weights_array_2d(
|
|
weights->mutable_data<float>(platform::CPUPlace()), weights_shape_2d[0],
|
|
weights_shape_2d[1]);
|
|
|
|
weights_array_2d.colwise() *= variance_array;
|
|
}
|
|
|
|
std::unique_ptr<ir::Graph> ConvBNFusePass::ApplyImpl(
|
|
std::unique_ptr<ir::Graph> graph) const {
|
|
PADDLE_ENFORCE(graph.get());
|
|
FusePassBase::Init(name_scope_, graph.get());
|
|
|
|
auto* scope = param_scope();
|
|
PADDLE_ENFORCE(scope);
|
|
|
|
GraphPatternDetector gpd;
|
|
auto* conv_input =
|
|
gpd.mutable_pattern()
|
|
->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
|
|
->AsInput()
|
|
->assert_is_op_input("conv2d", "Input");
|
|
patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
|
|
conv_bn_pattern(conv_input, false /*with_eltwise_add*/);
|
|
|
|
int found_conv_bn_count = 0;
|
|
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
|
|
Graph* g) {
|
|
VLOG(40) << "handle ConvBN fuse";
|
|
|
|
// conv, batch_norm,
|
|
// conv_weight, conv_out,
|
|
// bn_scale, bn_bias, bn_mean, bn_variance,
|
|
// bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,
|
|
// bn_saved_variance
|
|
GET_CONV_BN_NODES(conv_bn_pattern);
|
|
|
|
// check if fuse can be done and if MKL-DNN should be used
|
|
FuseOptions fuse_option = FindFuseOption(*conv, *batch_norm);
|
|
if (fuse_option == DO_NOT_FUSE) {
|
|
VLOG(30) << "do not perform conv+bn fuse";
|
|
return;
|
|
}
|
|
|
|
// Create eltwise_y (conv bias) variable
|
|
VarDesc eltwise_y_in_desc(
|
|
patterns::PDNodeName(name_scope_, "eltwise_y_in"));
|
|
eltwise_y_in_desc.SetPersistable(true);
|
|
auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
|
|
auto* eltwise_y_in_tensor =
|
|
scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();
|
|
|
|
// Get batch norm bias
|
|
auto* bn_bias_tensor =
|
|
scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();
|
|
|
|
// Initialize eltwise_y
|
|
eltwise_y_in_tensor->Resize(bn_bias_tensor->dims());
|
|
std::fill_n(eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
|
|
eltwise_y_in_tensor->numel(), 0.0f);
|
|
|
|
// update weights and biases
|
|
float epsilon = boost::get<float>(batch_norm->Op()->GetAttr("epsilon"));
|
|
recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
|
|
*bn_mean, *bn_variance, eltwise_y_in_tensor,
|
|
epsilon);
|
|
|
|
// with MKL-DNN fuse conv+bn into conv with bias
|
|
// without MKL-DNN fuse conv+bn into conv+elementwise_add
|
|
if (fuse_option == FUSE_MKLDNN) {
|
|
auto input_names = conv->Op()->InputNames();
|
|
bool has_bias = std::find(input_names.begin(), input_names.end(),
|
|
"Bias") != input_names.end();
|
|
if (has_bias && conv->Op()->Input("Bias").size() > 0) {
|
|
// reuse existing conv bias node
|
|
auto conv_bias_names = conv->Op()->Input("Bias");
|
|
PADDLE_ENFORCE_EQ(conv_bias_names.size(), 1);
|
|
auto* conv_bias_var = scope->FindVar(conv_bias_names[0]);
|
|
auto* conv_bias_tensor = conv_bias_var->GetMutable<LoDTensor>();
|
|
PADDLE_ENFORCE_EQ(conv_bias_tensor->dims(),
|
|
eltwise_y_in_tensor->dims());
|
|
|
|
auto eigen_conv_bias = EigenVector<float>::From(*conv_bias_tensor);
|
|
eigen_conv_bias += EigenVector<float>::From(*eltwise_y_in_tensor);
|
|
} else {
|
|
// add new conv_bias node
|
|
conv->Op()->SetInput(
|
|
"Bias", std::vector<std::string>({eltwise_y_in_node->Name()}));
|
|
IR_NODE_LINK_TO(eltwise_y_in_node, conv);
|
|
}
|
|
conv->Op()->SetOutput("Output",
|
|
std::vector<std::string>({bn_out->Name()}));
|
|
|
|
GraphSafeRemoveNodes(
|
|
graph.get(),
|
|
{conv_out, bn_scale, bn_bias, bn_mean, bn_variance, batch_norm,
|
|
bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance});
|
|
|
|
IR_NODE_LINK_TO(conv, bn_out);
|
|
found_conv_bn_count++;
|
|
} else { // fuse_option == FUSE_NATIVE
|
|
// create an elementwise add node.
|
|
OpDesc desc;
|
|
desc.SetInput("X", std::vector<std::string>({conv_out->Name()}));
|
|
desc.SetInput("Y", std::vector<std::string>({eltwise_y_in_node->Name()}));
|
|
desc.SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
|
|
desc.SetType("elementwise_add");
|
|
desc.SetAttr("axis", 1);
|
|
auto eltwise_op = g->CreateOpNode(&desc); // OpDesc will be copied.
|
|
|
|
GraphSafeRemoveNodes(
|
|
graph.get(),
|
|
{bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out,
|
|
bn_variance_out, bn_saved_mean, bn_saved_variance});
|
|
|
|
IR_NODE_LINK_TO(conv_out, eltwise_op);
|
|
IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op);
|
|
IR_NODE_LINK_TO(eltwise_op, bn_out);
|
|
found_conv_bn_count++;
|
|
}
|
|
};
|
|
|
|
gpd(graph.get(), handler);
|
|
|
|
AddStatis(found_conv_bn_count);
|
|
return graph;
|
|
}
|
|
|
|
std::unique_ptr<ir::Graph> ConvEltwiseAddBNFusePass::ApplyImpl(
|
|
std::unique_ptr<ir::Graph> graph) const {
|
|
PADDLE_ENFORCE(graph.get());
|
|
FusePassBase::Init(name_scope_, graph.get());
|
|
|
|
auto* scope = param_scope();
|
|
PADDLE_ENFORCE(scope);
|
|
|
|
GraphPatternDetector gpd;
|
|
auto* conv_input =
|
|
gpd.mutable_pattern()
|
|
->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
|
|
->AsInput()
|
|
->assert_is_op_input("conv2d", "Input");
|
|
patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
|
|
conv_bn_pattern(conv_input, true /*with_eltwise_add*/);
|
|
|
|
int found_conv_bn_count = 0;
|
|
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
|
|
Graph* g) {
|
|
VLOG(40) << "handle ConvBN fuse";
|
|
|
|
// conv, batch_norm,
|
|
// conv_weight, conv_out,
|
|
// bn_scale, bn_bias, bn_mean, bn_variance,
|
|
// bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance
|
|
GET_CONV_BN_NODES(conv_bn_pattern);
|
|
// OPERATORS
|
|
GET_IR_NODE_FROM_SUBGRAPH(eltwise, eltwise, conv_bn_pattern);
|
|
// BIAS inputs
|
|
GET_IR_NODE_FROM_SUBGRAPH(eltwise_y_in, eltwise_y_in, conv_bn_pattern);
|
|
// BIAS outputs
|
|
GET_IR_NODE_FROM_SUBGRAPH(eltwise_out, eltwise_out, conv_bn_pattern);
|
|
|
|
// Get eltwise_y (conv bias) variable
|
|
auto* eltwise_y_in_tensor =
|
|
scope->FindVar(eltwise_y_in->Name())->GetMutable<LoDTensor>();
|
|
|
|
// Get batch norm bias
|
|
auto* bn_bias_tensor =
|
|
scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();
|
|
|
|
// update weights and biases
|
|
float epsilon = boost::get<float>(batch_norm->Op()->GetAttr("epsilon"));
|
|
recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
|
|
*bn_mean, *bn_variance, eltwise_y_in_tensor,
|
|
epsilon);
|
|
|
|
// Update the elementwise_add node
|
|
eltwise->Op()->SetAttr("axis", 1);
|
|
eltwise->Op()->SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
|
|
|
|
GraphSafeRemoveNodes(
|
|
graph.get(),
|
|
{bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out,
|
|
bn_variance_out, bn_saved_mean, bn_saved_variance, eltwise_out});
|
|
|
|
IR_NODE_LINK_TO(eltwise, bn_out);
|
|
|
|
found_conv_bn_count++;
|
|
};
|
|
|
|
gpd(graph.get(), handler);
|
|
|
|
AddStatis(found_conv_bn_count);
|
|
return graph;
|
|
}
|
|
|
|
} // namespace ir
|
|
} // namespace framework
|
|
} // namespace paddle
|
|
|
|
REGISTER_PASS(conv_bn_fuse_pass, paddle::framework::ir::ConvBNFusePass);
|
|
REGISTER_PASS(conv_eltwiseadd_bn_fuse_pass,
|
|
paddle::framework::ir::ConvEltwiseAddBNFusePass);
|