You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/optimizer/parameter_optimizer_test.cpp

119 lines
3.2 KiB

#include "parameter_optimizer.h"
#include <cmath>
#include <map>
#include <vector>
#include "adadelta_optimizer.h"
#include "adagrad_optimizer.h"
#include "adam_optimizer.h"
#include "gtest/gtest.h"
#include "sgd_optimizer.h"
using namespace paddle;
using namespace paddle::optimizer;
Tensor* FillTensor(size_t size) {
Tensor* param = new Tensor(size);
Tensor& p = *param;
for (size_t i = 0; i < p.size(); ++i) {
p[i] = (float)rand() / (float)RAND_MAX;
}
return param;
}
Tensor* FixedTensor(size_t size) {
Tensor* param = new Tensor(size);
Tensor& p = *param;
for (size_t i = 0; i < p.size(); ++i) {
p[i] = i;
}
return param;
}
class OptimizerTest : public testing::Test {
public:
// init tensor shape
const size_t kSize = 5;
virtual void SetUp() {
CreateSGD();
CreateAdam();
}
virtual void TearDown() {}
void CreateSGD() {
Tensor* parameter = FillTensor(kSize);
config_.set_optimizer(OptimizerConfig::SGD);
config_.mutable_sgd()->set_momentum(0.0);
config_.mutable_sgd()->set_decay(0.0);
config_.mutable_sgd()->set_nesterov(false);
config_.set_lr_policy(OptimizerConfig::ConstLr);
config_.mutable_const_lr()->set_learning_rate(0.1);
ParameterOptimizer* opt =
ParameterOptimizer::Create(config_.SerializeAsString(), parameter);
opts_.push_back(opt);
opts_table_[opts_.size()] = OptimizerConfig::SGD;
}
void CreateAdam() {
Tensor* parameter = FixedTensor(kSize);
config_.set_optimizer(OptimizerConfig::Adam);
config_.mutable_adam()->set_beta_1(0.9);
config_.mutable_adam()->set_beta_2(0.1);
config_.mutable_adam()->set_epsilon(1e-3);
config_.mutable_adam()->set_decay(0.0);
config_.set_lr_policy(OptimizerConfig::ConstLr);
config_.mutable_const_lr()->set_learning_rate(0.1);
ParameterOptimizer* opt =
ParameterOptimizer::Create(config_.SerializeAsString(), parameter);
opts_.push_back(opt);
opts_table_[opts_.size()] = OptimizerConfig::Adam;
}
void TestGetWeight() {
Tensor* p = FixedTensor(kSize);
for (size_t i = 0; i < opts_.size(); ++i) {
int s = 0;
float* newp = (float*)opts_[i]->get_weight(&s);
for (size_t j = 0; j < kSize; ++j) {
EXPECT_EQ(newp[j], (*p)[j]);
}
}
}
void TestUpdate() {
Tensor* g = FixedTensor(kSize);
for (size_t i = 0; i < opts_.size(); ++i) {
opts_[i]->Update(g);
}
}
void TestCheckPoint() {
std::map<OptimizerConfig::Optimizer, int> expected_state_len = {
{OptimizerConfig::SGD, kSize}, {OptimizerConfig::Adam, kSize * 3},
};
for (size_t i = 0; i < opts_.size(); ++i) {
int state_len = 0;
std::string state = opts_[i]->SerializeState(&state_len);
EXPECT_EQ(state_len, expected_state_len[opts_table_[i]]);
opts_[i]->DeserializeState(state);
}
}
private:
std::vector<ParameterOptimizer*> opts_;
std::map<int, OptimizerConfig::Optimizer> opts_table_;
OptimizerConfig config_;
};
TEST_F(OptimizerTest, TestGetWeight) { TestGetWeight(); }
TEST_F(OptimizerTest, TestUpdate) { TestUpdate(); }
TEST_F(OptimizerTest, TestCheckPoint) { TestCheckPoint(); }
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}