You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							216 lines
						
					
					
						
							9.6 KiB
						
					
					
				
			
		
		
	
	
							216 lines
						
					
					
						
							9.6 KiB
						
					
					
				| # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import logging
 | |
| import sys
 | |
| import numpy as np
 | |
| from .... import Executor
 | |
| from .... import io
 | |
| from .... import core
 | |
| from ....compiler import CompiledProgram
 | |
| from ....compiler import BuildStrategy
 | |
| from ....framework import IrGraph
 | |
| from ..core.strategy import Strategy
 | |
| from .quantization_pass import *
 | |
| 
 | |
| __all__ = ['QuantizationStrategy']
 | |
| 
 | |
| logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s')
 | |
| _logger = logging.getLogger(__name__)
 | |
| _logger.setLevel(logging.INFO)
 | |
| 
 | |
| 
 | |
| class QuantizationStrategy(Strategy):
 | |
|     """
 | |
|     The strategy for Quantization.
 | |
|     """
 | |
| 
 | |
|     def __init__(self,
 | |
|                  start_epoch=0,
 | |
|                  end_epoch=0,
 | |
|                  float_model_save_path=None,
 | |
|                  mobile_model_save_path=None,
 | |
|                  int8_model_save_path=None,
 | |
|                  activation_bits=8,
 | |
|                  weight_bits=8,
 | |
|                  activation_quantize_type='abs_max',
 | |
|                  weight_quantize_type='abs_max',
 | |
|                  save_in_nodes=None,
 | |
|                  save_out_nodes=None):
 | |
|         """
 | |
|         Args:
 | |
|             start_epoch(int): The 'on_epoch_begin' function will be called in start_epoch. default: 0
 | |
|             end_epoch(int): The 'on_epoch_end' function will be called in end_epoch. default: 0
 | |
|             float_model_save_path(str): The path to save model with float weights.
 | |
|                             None means it doesn't save float model. defalut: None.
 | |
|             mobile_model_save_path(str): The path to save model for paddle-mobile execution.
 | |
|                             None means it doesn't save mobile model. defalut: None.
 | |
|             int8_model_save_path(str): The path to save model with int8_t weight.
 | |
|                             None means it doesn't save int8 model. defalut: None.
 | |
|             activation_bits(int): quantization bit number for activation. default: 8.
 | |
|             weight_bits(int): quantization bit number for weights. The bias is not quantized.
 | |
|                               default: 8.
 | |
|             activation_quantize_type(str): quantization type for activation,
 | |
|                 now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
 | |
|                 If use 'abs_max' mode, the quantization scale will be calculated
 | |
|                 dynamically each step in both training and testing period. If use
 | |
|                 'range_abs_max', a static quantization scale will be calculated
 | |
|                 during training and used in inference.
 | |
|             weight_quantize_type (str): quantization type for weights, support 'abs_max' and 'channel_wise_abs_max'.
 | |
|             The 'range_abs_max' usually is not used for weight, since weights are fixed once the model is well trained.
 | |
|             save_in_nodes(list<str>): A list of variable names used to prune graph
 | |
|                                       for saving inference model.
 | |
|             save_out_nodes(list<str>): A list of variable names used to prune graph
 | |
|                                       for saving inference model.
 | |
| 
 | |
|         """
 | |
|         super(QuantizationStrategy, self).__init__(start_epoch, end_epoch)
 | |
|         self.start_epoch = start_epoch
 | |
|         self.end_epoch = end_epoch
 | |
|         self.float_model_save_path = float_model_save_path
 | |
|         self.mobile_model_save_path = mobile_model_save_path
 | |
|         self.int8_model_save_path = int8_model_save_path
 | |
|         self.activation_bits = activation_bits
 | |
|         self.weight_bits = weight_bits
 | |
|         self.activation_quantize_type = activation_quantize_type
 | |
|         self.weight_quantize_type = weight_quantize_type
 | |
|         self.save_out_nodes = save_out_nodes
 | |
|         self.save_in_nodes = save_in_nodes
 | |
| 
 | |
|     def on_epoch_begin(self, context):
 | |
|         """
 | |
|         Insert fake_quantize_op and fake_dequantize_op before trainging and testing.
 | |
|         """
 | |
|         super(QuantizationStrategy, self).on_compression_begin(context)
 | |
|         if self.start_epoch == context.epoch_id:
 | |
|             _logger.info('QuantizationStrategy::on_epoch_begin')
 | |
|             train_ir_graph = IrGraph(
 | |
|                 core.Graph(context.optimize_graph.program.desc), for_test=False)
 | |
|             test_ir_graph = IrGraph(
 | |
|                 core.Graph(context.eval_graph.program.desc), for_test=True)
 | |
|             transform_pass = QuantizationTransformPass(
 | |
|                 scope=context.scope,
 | |
|                 place=context.place,
 | |
|                 weight_bits=self.weight_bits,
 | |
|                 activation_bits=self.activation_bits,
 | |
|                 activation_quantize_type=self.activation_quantize_type,
 | |
|                 weight_quantize_type=self.weight_quantize_type)
 | |
|             transform_pass.apply(train_ir_graph)
 | |
|             transform_pass.apply(test_ir_graph)
 | |
| 
 | |
|             build_strategy = BuildStrategy()
 | |
|             build_strategy.enable_inplace = False
 | |
|             build_strategy.memory_optimize = False
 | |
|             # for quantization training
 | |
|             context.optimize_graph.compiled_graph = CompiledProgram(
 | |
|                 train_ir_graph.graph).with_data_parallel(
 | |
|                     loss_name=context.optimize_graph.out_nodes['loss'],
 | |
|                     build_strategy=build_strategy)
 | |
|             # for evaluation. And program compiled from ir graph must be with data parallel.
 | |
|             context.eval_graph.compiled_graph = CompiledProgram(
 | |
|                 test_ir_graph.graph).with_data_parallel(
 | |
|                     build_strategy=build_strategy)
 | |
|             # for saving inference model after training
 | |
|             context.put('quantization_test_ir_graph_backup', test_ir_graph)
 | |
|             _logger.info('Finish QuantizationStrategy::on_epoch_begin')
 | |
| 
 | |
|     def on_epoch_end(self, context):
 | |
|         """
 | |
|         Free and save inference model.
 | |
|         """
 | |
|         super(QuantizationStrategy, self).on_compression_end(context)
 | |
| 
 | |
|         if context.epoch_id == self.end_epoch:
 | |
|             _logger.info('QuantizationStrategy::on_epoch_end')
 | |
|             test_ir_graph = context.get('quantization_test_ir_graph_backup')
 | |
|             # freeze the graph after training
 | |
|             freeze_pass = QuantizationFreezePass(
 | |
|                 scope=context.scope,
 | |
|                 place=context.place,
 | |
|                 weight_bits=self.weight_bits,
 | |
|                 activation_bits=self.activation_bits,
 | |
|                 weight_quantize_type=self.weight_quantize_type)
 | |
|             freeze_pass.apply(test_ir_graph)
 | |
| 
 | |
|             # for other strategies
 | |
|             context.eval_graph.program = test_ir_graph.to_program()
 | |
| 
 | |
|             if self.save_out_nodes == None:
 | |
|                 out_vars = [
 | |
|                     context.eval_graph.var(var_name)._var
 | |
|                     for var_name in context.eval_graph.out_nodes.values()
 | |
|                 ]
 | |
|             else:
 | |
|                 out_vars = [
 | |
|                     context.eval_graph.var(var_name)._var
 | |
|                     for var_name in self.save_out_nodes
 | |
|                 ]
 | |
| 
 | |
|             if self.save_in_nodes == None:
 | |
|                 in_vars = list(context.eval_graph.out_nodes.values())
 | |
|             else:
 | |
|                 in_vars = self.save_in_nodes
 | |
| 
 | |
|             # save float model
 | |
|             if self.float_model_save_path:
 | |
|                 executor = Executor(context.place)
 | |
|                 io.save_inference_model(
 | |
|                     self.float_model_save_path,
 | |
|                     in_vars,
 | |
|                     out_vars,
 | |
|                     executor,
 | |
|                     main_program=test_ir_graph.to_program(),
 | |
|                     model_filename='model',
 | |
|                     params_filename='weights',
 | |
|                     export_for_deployment=True)
 | |
| 
 | |
|             # save int8 model
 | |
|             if self.int8_model_save_path:
 | |
|                 convert_int8_pass = ConvertToInt8Pass(
 | |
|                     scope=context.scope, place=context.place)
 | |
|                 convert_int8_pass.apply(test_ir_graph)
 | |
| 
 | |
|                 executor = Executor(context.place)
 | |
|                 io.save_inference_model(
 | |
|                     self.int8_model_save_path,
 | |
|                     in_vars,
 | |
|                     out_vars,
 | |
|                     executor,
 | |
|                     main_program=test_ir_graph.to_program(),
 | |
|                     model_filename='model',
 | |
|                     params_filename='weights',
 | |
|                     export_for_deployment=True)
 | |
| 
 | |
|             # save mobile model
 | |
|             if self.mobile_model_save_path:
 | |
|                 if not self.int8_model_save_path:
 | |
|                     # convert the weights as int8_t type
 | |
|                     convert_int8_pass = ConvertToInt8Pass(
 | |
|                         scope=context.scope, place=context.place)
 | |
|                     convert_int8_pass.apply(test_ir_graph)
 | |
|                 # make some changes on the graph for the mobile inference
 | |
|                 mobile_pass = TransformForMobilePass()
 | |
|                 mobile_pass.apply(test_ir_graph)
 | |
|                 executor = Executor(context.place)
 | |
|                 io.save_inference_model(
 | |
|                     self.mobile_model_save_path,
 | |
|                     in_vars,
 | |
|                     out_vars,
 | |
|                     executor,
 | |
|                     main_program=test_ir_graph.to_program(),
 | |
|                     model_filename='model',
 | |
|                     params_filename='weights',
 | |
|                     export_for_deployment=True)
 | |
|             _logger.info('Finish QuantizationStrategy::on_epoch_end')
 |