You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/operators/uniform_random_op.cu

68 lines
2.4 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
namespace paddle {
namespace operators {
template <typename T>
struct UniformGenerator {
T min_, max_;
unsigned int seed_;
__host__ __device__ UniformGenerator(T min, T max, int seed)
: min_(min), max_(max), seed_(seed) {}
__host__ __device__ T operator()(const unsigned int n) const {
thrust::minstd_rand rng;
rng.seed(seed_);
thrust::uniform_real_distribution<T> dist(min_, max_);
rng.discard(n);
return dist(rng);
}
};
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
class GPUUniformRandomKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* tensor = context.Output<framework::Tensor>("Out");
T* data = tensor->mutable_data<T>(context.GetPlace());
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
if (seed == 0) {
std::random_device rd;
seed = rd();
}
T min = static_cast<T>(context.Attr<float>("min"));
T max = static_cast<T>(context.Attr<float>("max"));
thrust::counting_iterator<unsigned int> index_sequence_begin(0);
int64_t size = tensor->numel();
thrust::transform(index_sequence_begin, index_sequence_begin + size,
thrust::device_ptr<T>(data),
UniformGenerator<T>(min, max, seed));
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_GPU_KERNEL(uniform_random,
paddle::operators::GPUUniformRandomKernel<float>);