You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
480 lines
20 KiB
480 lines
20 KiB
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
template <typename T>
|
|
T bilinear_interp(const T* data, const T x, const T y, const int width,
|
|
const int height) {
|
|
int x1 = floor(x);
|
|
int x2 = ceil(x);
|
|
int y1 = floor(y);
|
|
int y2 = ceil(y);
|
|
T dist_x = static_cast<T>(x - x1);
|
|
T dist_y = static_cast<T>(y - y1);
|
|
T value11 = data[y1 * width + x1];
|
|
T value12 = data[y2 * width + x1];
|
|
T value21 = data[y1 * width + x2];
|
|
T value22 = data[y2 * width + x2];
|
|
T value = (1 - dist_x) * (1 - dist_y) * value11 +
|
|
(1 - dist_x) * dist_y * value12 + dist_x * (1 - dist_y) * value21 +
|
|
dist_x * dist_y * value22;
|
|
return value;
|
|
}
|
|
|
|
template <typename T>
|
|
void DeformablePSROIPoolForwardCPUKernel(
|
|
const int count, const T* bottom_data, const T spatial_scale,
|
|
const int channels, const int height, const int width,
|
|
const int pooled_height, const int pooled_width, const T* bottom_rois,
|
|
const T* bottom_trans, const bool no_trans, const float trans_std,
|
|
const int sample_per_part, const int output_dim, const int group_height,
|
|
const int group_width, const int part_height, const int part_width,
|
|
const int num_classes, const int channels_each_class, T* top_data,
|
|
T* top_count, const int batch_size, int* roi_batch_id_data,
|
|
const LoDTensor* rois) {
|
|
for (int ix = 0; ix < count; ix++) {
|
|
int pw = ix % pooled_width;
|
|
int ph = (ix / pooled_width) % pooled_height;
|
|
int ctop = (ix / pooled_width / pooled_height) % output_dim;
|
|
int n = ix / pooled_width / pooled_height / output_dim;
|
|
const T* offset_bottom_rois = bottom_rois + n * 4;
|
|
|
|
int roi_batch_ind = roi_batch_id_data[n];
|
|
T roi_start_w =
|
|
static_cast<T>(round(offset_bottom_rois[0])) * spatial_scale - 0.5;
|
|
T roi_start_h =
|
|
static_cast<T>(round(offset_bottom_rois[1])) * spatial_scale - 0.5;
|
|
T roi_end_w =
|
|
static_cast<T>(round(offset_bottom_rois[2]) + 1.) * spatial_scale - 0.5;
|
|
T roi_end_h =
|
|
static_cast<T>(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5;
|
|
|
|
// width and height of roi
|
|
T roi_width = std::max(roi_end_w - roi_start_w, T(0.1));
|
|
T roi_height = std::max(roi_end_h - roi_start_h, T(0.1));
|
|
|
|
// width and height of each bin
|
|
T bin_size_h = roi_height / static_cast<T>(pooled_height);
|
|
T bin_size_w = roi_width / static_cast<T>(pooled_width);
|
|
|
|
// sampling interval in each bin
|
|
T sub_bin_size_h = bin_size_h / static_cast<T>(sample_per_part);
|
|
T sub_bin_size_w = bin_size_w / static_cast<T>(sample_per_part);
|
|
|
|
// obtain offset of roi
|
|
int part_h = floor(static_cast<T>(ph) / pooled_height * part_height);
|
|
int part_w = floor(static_cast<T>(pw) / pooled_width * part_width);
|
|
int class_id = ctop / channels_each_class;
|
|
|
|
T trans_x =
|
|
no_trans
|
|
? static_cast<T>(0)
|
|
: bottom_trans[(((n * num_classes + class_id) * 2) * part_height +
|
|
part_h) *
|
|
part_width +
|
|
part_w] *
|
|
static_cast<T>(trans_std);
|
|
T trans_y = no_trans
|
|
? static_cast<T>(0)
|
|
: bottom_trans[(((n * num_classes + class_id) * 2 + 1) *
|
|
part_height +
|
|
part_h) *
|
|
part_width +
|
|
part_w] *
|
|
static_cast<T>(trans_std);
|
|
|
|
// location of start after adding offset
|
|
T wstart = static_cast<T>(pw) * bin_size_w + roi_start_w;
|
|
wstart += trans_x * roi_width;
|
|
T hstart = static_cast<T>(ph) * bin_size_h + roi_start_h;
|
|
hstart += trans_y * roi_height;
|
|
T sum = 0;
|
|
int num_sample = 0;
|
|
int gw = floor(static_cast<T>(pw) * group_width / pooled_width);
|
|
int gh = floor(static_cast<T>(ph) * group_height / pooled_height);
|
|
gw = std::min(std::max(gw, 0), group_width - 1);
|
|
gh = std::min(std::max(gh, 0), group_height - 1);
|
|
const T* offset_bottom_data =
|
|
bottom_data + (roi_batch_ind * channels) * height * width;
|
|
|
|
// sampling in each bin
|
|
for (int ih = 0; ih < sample_per_part; ih++) {
|
|
for (int iw = 0; iw < sample_per_part; iw++) {
|
|
T w = wstart + iw * sub_bin_size_w;
|
|
T h = hstart + ih * sub_bin_size_h;
|
|
if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5) {
|
|
continue;
|
|
}
|
|
w = std::min(std::max(w, T(0.)), T(width - 1.));
|
|
h = std::min(std::max(h, T(0.)), height - T(1.));
|
|
int c = (ctop * group_height + gh) * group_width + gw;
|
|
// bilinear interpolation to get value
|
|
T val = bilinear_interp(offset_bottom_data + c * height * width, w, h,
|
|
width, height);
|
|
sum += val;
|
|
num_sample++;
|
|
}
|
|
}
|
|
top_data[ix] = num_sample == 0 ? static_cast<T>(0) : sum / num_sample;
|
|
top_count[ix] = num_sample;
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class DeformablePSROIPoolCPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* input = ctx.Input<Tensor>("Input");
|
|
auto* rois = ctx.Input<LoDTensor>("ROIs");
|
|
auto* trans = ctx.Input<Tensor>("Trans");
|
|
auto* out = ctx.Output<Tensor>("Output");
|
|
out->mutable_data<T>(ctx.GetPlace());
|
|
auto* top_count = ctx.Output<Tensor>("TopCount");
|
|
top_count->mutable_data<T>(ctx.GetPlace());
|
|
|
|
math::SetConstant<DeviceContext, T> set_zero;
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
set_zero(dev_ctx, out, static_cast<T>(0));
|
|
set_zero(dev_ctx, top_count, static_cast<T>(0));
|
|
|
|
const int num_rois = rois->dims()[0];
|
|
PADDLE_ENFORCE_EQ(num_rois, out->dims()[0],
|
|
"number of rois should be same with number of output");
|
|
|
|
framework::Tensor roi_batch_id_list;
|
|
roi_batch_id_list.Resize({num_rois});
|
|
int* roi_batch_id_data =
|
|
roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
|
|
auto no_trans = ctx.Attr<bool>("no_trans");
|
|
auto spatial_scale = ctx.Attr<float>("spatial_scale");
|
|
auto output_dim = ctx.Attr<int>("output_dim");
|
|
auto group_size = ctx.Attr<std::vector<int>>("group_size");
|
|
auto group_height = group_size[0];
|
|
auto group_width = group_size[1];
|
|
auto pooled_height = ctx.Attr<int>("pooled_height");
|
|
auto pooled_width = ctx.Attr<int>("pooled_width");
|
|
auto part_size = ctx.Attr<std::vector<int>>("part_size");
|
|
auto part_height = part_size[0];
|
|
auto part_width = part_size[1];
|
|
auto sample_per_part = ctx.Attr<int>("sample_per_part");
|
|
auto trans_std = ctx.Attr<float>("trans_std");
|
|
|
|
int batch = static_cast<int>(input->dims()[0]);
|
|
int channels = static_cast<int>(input->dims()[1]);
|
|
int height = static_cast<int>(input->dims()[2]);
|
|
int width = static_cast<int>(input->dims()[3]);
|
|
int channels_trans = no_trans ? 2 : trans->dims()[1];
|
|
auto count = num_rois * output_dim * pooled_height * pooled_width;
|
|
auto num_classes = no_trans ? 1 : channels_trans / 2;
|
|
auto channels_each_class = no_trans ? output_dim : output_dim / num_classes;
|
|
PADDLE_ENFORCE(channels_each_class >= 1,
|
|
"channels_each must greater than 1");
|
|
|
|
const T* bottom_data = input->data<T>();
|
|
const T* bottom_rois = rois->data<T>();
|
|
const T* bottom_trans = no_trans ? NULL : trans->data<T>();
|
|
|
|
T* top_data = out->mutable_data<T>(ctx.GetPlace());
|
|
T* top_count_data = top_count->mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto rois_lod = rois->lod().back();
|
|
int rois_batch_size = rois_lod.size() - 1;
|
|
PADDLE_ENFORCE_EQ(rois_batch_size, batch,
|
|
"The rois_batch_size must equal to batch_size of img.");
|
|
int rois_num_with_lod = rois_lod[rois_batch_size];
|
|
PADDLE_ENFORCE_EQ(num_rois, rois_num_with_lod,
|
|
"The rois_num from input and lod must be the same.");
|
|
for (int n = 0; n < rois_batch_size; ++n) {
|
|
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
|
|
roi_batch_id_data[i] = n;
|
|
}
|
|
}
|
|
|
|
DeformablePSROIPoolForwardCPUKernel(
|
|
count, bottom_data, (T)spatial_scale, channels, height, width,
|
|
pooled_height, pooled_width, bottom_rois, bottom_trans, no_trans,
|
|
trans_std, sample_per_part, output_dim, group_height, group_width,
|
|
part_height, part_width, num_classes, channels_each_class, top_data,
|
|
top_count_data, batch, roi_batch_id_data, rois);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
void DeformablePSROIPoolBackwardAccCPUKernel(
|
|
const int count, const T* top_diff, const T* top_count, const int num_rois,
|
|
const T spatial_scale, const int channels, const int height,
|
|
const int width, const int pooled_height, const int pooled_width,
|
|
const int output_dim, T* bottom_data_diff, T* bottom_trans_diff,
|
|
const T* bottom_data, const T* bottom_rois, const T* bottom_trans,
|
|
const bool no_trans, const float trans_std, const int sample_per_part,
|
|
const int group_height, const int group_width, const int part_height,
|
|
const int part_width, const int num_classes, const int channels_each_class,
|
|
const int batch_size, int* roi_batch_id_data, const LoDTensor* rois) {
|
|
for (int index = 0; index < count; index++) {
|
|
int pw = index % pooled_width;
|
|
int ph = (index / pooled_width) % pooled_height;
|
|
int ctop = (index / pooled_width / pooled_height) % output_dim;
|
|
int n = index / pooled_width / pooled_height / output_dim;
|
|
|
|
// location of roi on feature map
|
|
const T* offset_bottom_rois = bottom_rois + n * 4;
|
|
int roi_batch_ind = roi_batch_id_data[n];
|
|
T roi_start_w =
|
|
static_cast<T>(round(offset_bottom_rois[0])) * spatial_scale - 0.5;
|
|
T roi_start_h =
|
|
static_cast<T>(round(offset_bottom_rois[1])) * spatial_scale - 0.5;
|
|
T roi_end_w =
|
|
static_cast<T>(round(offset_bottom_rois[2]) + 1.) * spatial_scale - 0.5;
|
|
T roi_end_h =
|
|
static_cast<T>(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5;
|
|
|
|
// width and height of roi
|
|
T roi_width = std::max(roi_end_w - roi_start_w, T(0.1));
|
|
T roi_height = std::max(roi_end_h - roi_start_h, T(0.1));
|
|
|
|
// width and height of each bin
|
|
T bin_size_h = roi_height / static_cast<T>(pooled_height);
|
|
T bin_size_w = roi_width / static_cast<T>(pooled_width);
|
|
|
|
// sampling interval in each bin
|
|
T sub_bin_size_h = bin_size_h / static_cast<T>(sample_per_part);
|
|
T sub_bin_size_w = bin_size_w / static_cast<T>(sample_per_part);
|
|
|
|
// obtain offset of roi
|
|
int part_h = floor(static_cast<T>(ph) / pooled_height * part_height);
|
|
int part_w = floor(static_cast<T>(pw) / pooled_width * part_height);
|
|
int class_id = ctop / channels_each_class;
|
|
|
|
T trans_x =
|
|
no_trans
|
|
? static_cast<T>(0)
|
|
: bottom_trans[(((n * num_classes + class_id) * 2) * part_height +
|
|
part_h) *
|
|
part_width +
|
|
part_w] *
|
|
static_cast<T>(trans_std);
|
|
T trans_y = no_trans
|
|
? static_cast<T>(0)
|
|
: bottom_trans[(((n * num_classes + class_id) * 2 + 1) *
|
|
part_height +
|
|
part_h) *
|
|
part_width +
|
|
part_w] *
|
|
static_cast<T>(trans_std);
|
|
|
|
// location of start after adding offset
|
|
T wstart = static_cast<T>(pw) * bin_size_w + roi_start_w;
|
|
wstart += trans_x * roi_width;
|
|
T hstart = static_cast<T>(ph) * bin_size_h + roi_start_h;
|
|
hstart += trans_y * roi_height;
|
|
|
|
if (top_count[index] <= 0) {
|
|
continue;
|
|
}
|
|
|
|
T diff_val = top_diff[index] / top_count[index];
|
|
const T* offset_bottom_data =
|
|
bottom_data + roi_batch_ind * channels * height * width;
|
|
int gw = floor(static_cast<T>(pw) * group_width / pooled_width);
|
|
int gh = floor(static_cast<T>(ph) * group_height / pooled_height);
|
|
gw = std::min(std::max(gw, 0), group_width - 1);
|
|
gh = std::min(std::max(gh, 0), group_height - 1);
|
|
|
|
// sampling in each bin
|
|
for (int ih = 0; ih < sample_per_part; ih++) {
|
|
for (int iw = 0; iw < sample_per_part; iw++) {
|
|
T w = wstart + iw * sub_bin_size_w;
|
|
T h = hstart + ih * sub_bin_size_h;
|
|
if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5) {
|
|
continue;
|
|
}
|
|
w = std::min(std::max(w, T(0.)), T(width - 1.));
|
|
h = std::min(std::max(h, T(0.)), T(height - 1.));
|
|
int c = (ctop * group_height + gh) * group_width + gw;
|
|
int x0 = floor(w);
|
|
int x1 = ceil(w);
|
|
int y0 = floor(h);
|
|
int y1 = ceil(h);
|
|
|
|
// compute coefficient of gradient
|
|
T dist_x = w - x0, dist_y = h - y0;
|
|
T q00 = (1 - dist_x) * (1 - dist_y);
|
|
T q01 = (1 - dist_x) * dist_y;
|
|
T q10 = dist_x * (1 - dist_y);
|
|
T q11 = dist_x * dist_y;
|
|
int bottom_index_base = c * height * width;
|
|
|
|
// compute gradient of input
|
|
if (bottom_data_diff != NULL) {
|
|
T* offset_bottom_data_diff_addr00 =
|
|
bottom_data_diff + roi_batch_ind * channels * height * width +
|
|
bottom_index_base + y0 * width + x0;
|
|
T* offset_bottom_data_diff_addr01 =
|
|
bottom_data_diff + roi_batch_ind * channels * height * width +
|
|
bottom_index_base + y1 * width + x0;
|
|
T* offset_bottom_data_diff_addr10 =
|
|
bottom_data_diff + roi_batch_ind * channels * height * width +
|
|
bottom_index_base + y0 * width + x1;
|
|
T* offset_bottom_data_diff_addr11 =
|
|
bottom_data_diff + roi_batch_ind * channels * height * width +
|
|
bottom_index_base + y1 * width + x1;
|
|
*offset_bottom_data_diff_addr00 =
|
|
*offset_bottom_data_diff_addr00 + q00 * diff_val;
|
|
*offset_bottom_data_diff_addr01 =
|
|
*offset_bottom_data_diff_addr01 + q01 * diff_val;
|
|
*offset_bottom_data_diff_addr10 =
|
|
*offset_bottom_data_diff_addr10 + q10 * diff_val;
|
|
*offset_bottom_data_diff_addr11 =
|
|
*offset_bottom_data_diff_addr11 + q11 * diff_val;
|
|
}
|
|
|
|
// compute gradient of trans
|
|
if (no_trans || bottom_trans_diff == NULL) {
|
|
continue;
|
|
}
|
|
|
|
T u00 = offset_bottom_data[bottom_index_base + y0 * width + x0];
|
|
T u01 = offset_bottom_data[bottom_index_base + y1 * width + x0];
|
|
T u10 = offset_bottom_data[bottom_index_base + y0 * width + x1];
|
|
T u11 = offset_bottom_data[bottom_index_base + y1 * width + x1];
|
|
|
|
T diff_x = (u11 * dist_y + u10 * (1 - dist_y) - u01 * dist_y -
|
|
u00 * (1 - dist_y)) *
|
|
trans_std * diff_val;
|
|
diff_x *= roi_width;
|
|
T diff_y = (u11 * dist_x + u01 * (1 - dist_x) - u10 * dist_x -
|
|
u00 * (1 - dist_x)) *
|
|
trans_std * diff_val;
|
|
diff_y *= roi_height;
|
|
T* offset_bottom_trans_diff_x =
|
|
bottom_trans_diff +
|
|
(((n * num_classes + class_id) * 2) * part_height + part_h) *
|
|
part_width +
|
|
part_w;
|
|
T* offset_bottom_trans_diff_y =
|
|
bottom_trans_diff +
|
|
(((n * num_classes + class_id) * 2 + 1) * part_height + part_h) *
|
|
part_width +
|
|
part_w;
|
|
|
|
*offset_bottom_trans_diff_x = *offset_bottom_trans_diff_x + diff_x;
|
|
*offset_bottom_trans_diff_y = *offset_bottom_trans_diff_y + diff_y;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class DeformablePSROIPoolGradCPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* input = ctx.Input<Tensor>("Input");
|
|
auto* rois = ctx.Input<LoDTensor>("ROIs");
|
|
auto* trans = ctx.Input<Tensor>("Trans");
|
|
auto* top_count = ctx.Input<Tensor>("TopCount");
|
|
auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
|
|
auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
|
|
math::SetConstant<DeviceContext, T> set_zero;
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
if (input_grad) {
|
|
input_grad->mutable_data<T>(ctx.GetPlace());
|
|
set_zero(dev_ctx, input_grad, static_cast<T>(.0));
|
|
}
|
|
auto* trans_grad = ctx.Output<Tensor>(framework::GradVarName("Trans"));
|
|
if (trans_grad) {
|
|
trans_grad->mutable_data<T>(ctx.GetPlace());
|
|
set_zero(dev_ctx, trans_grad, static_cast<T>(.0));
|
|
}
|
|
auto no_trans = ctx.Attr<bool>("no_trans");
|
|
auto spatial_scale = ctx.Attr<float>("spatial_scale");
|
|
auto output_dim = ctx.Attr<int>("output_dim");
|
|
auto group_size = ctx.Attr<std::vector<int>>("group_size");
|
|
auto group_height = group_size[0];
|
|
auto group_width = group_size[1];
|
|
auto pooled_height = ctx.Attr<int>("pooled_height");
|
|
auto pooled_width = ctx.Attr<int>("pooled_width");
|
|
auto part_size = ctx.Attr<std::vector<int>>("part_size");
|
|
auto part_height = part_size[0];
|
|
auto part_width = part_size[1];
|
|
auto sample_per_part = ctx.Attr<int>("sample_per_part");
|
|
auto trans_std = ctx.Attr<float>("trans_std");
|
|
|
|
const int batch = static_cast<int>(input->dims()[0]);
|
|
const int channels = static_cast<int>(input->dims()[1]);
|
|
const int height = static_cast<int>(input->dims()[2]);
|
|
const int width = static_cast<int>(input->dims()[3]);
|
|
const int channels_trans = no_trans ? 2 : trans->dims()[1];
|
|
const int num_rois = rois->dims()[0];
|
|
const int count = num_rois * output_dim * pooled_height * pooled_width;
|
|
const int num_classes = no_trans ? 1 : channels_trans / 2;
|
|
const int channels_each_class =
|
|
no_trans ? output_dim : output_dim / num_classes;
|
|
Tensor roi_batch_id_list;
|
|
roi_batch_id_list.Resize({num_rois});
|
|
int* roi_batch_id_data =
|
|
roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
|
|
|
|
const T* top_diff = output_grad->data<T>();
|
|
const T* bottom_data = input->data<T>();
|
|
const T* bottom_rois = rois->data<T>();
|
|
const T* bottom_trans = no_trans ? NULL : trans->data<T>();
|
|
|
|
T* bottom_data_diff = NULL;
|
|
T* bottom_trans_diff = NULL;
|
|
if (input_grad) {
|
|
bottom_data_diff = input_grad->mutable_data<T>(ctx.GetPlace());
|
|
}
|
|
if (trans_grad) {
|
|
bottom_trans_diff =
|
|
no_trans ? NULL : trans_grad->mutable_data<T>(ctx.GetPlace());
|
|
}
|
|
|
|
const T* top_count_data = top_count->data<T>();
|
|
auto rois_lod = rois->lod().back();
|
|
int rois_batch_size = rois_lod.size() - 1;
|
|
int rois_num_with_lod = rois_lod[rois_batch_size];
|
|
PADDLE_ENFORCE_EQ(num_rois, rois_num_with_lod,
|
|
"The rois_num from input and lod must be the same.");
|
|
for (int n = 0; n < rois_batch_size; ++n) {
|
|
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
|
|
roi_batch_id_data[i] = n;
|
|
}
|
|
}
|
|
|
|
DeformablePSROIPoolBackwardAccCPUKernel(
|
|
count, top_diff, top_count_data, num_rois, (T)spatial_scale, channels,
|
|
height, width, pooled_height, pooled_width, output_dim,
|
|
bottom_data_diff, bottom_trans_diff, bottom_data, bottom_rois,
|
|
bottom_trans, no_trans, (T)trans_std, sample_per_part, group_height,
|
|
group_width, part_height, part_width, num_classes, channels_each_class,
|
|
batch, roi_batch_id_data, rois);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|