You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
264 lines
10 KiB
264 lines
10 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/interpolate_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class InterpolateOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of InterpolateOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of InterpolationOp should not be null.");
|
|
|
|
auto interp_method = ctx->Attrs().Get<std::string>("interp_method");
|
|
PADDLE_ENFORCE(
|
|
"bilinear" == interp_method || "nearest" == interp_method,
|
|
"Interpolation method can only be \"bilinear\" or \"nearest\".");
|
|
|
|
auto dim_x = ctx->GetInputDim("X"); // NCHW format
|
|
PADDLE_ENFORCE_EQ(dim_x.size(), 4, "X's dimension must be 4");
|
|
|
|
int out_h, out_w;
|
|
float scale = ctx->Attrs().Get<float>("scale");
|
|
if (scale > 0) {
|
|
// round down
|
|
out_h = static_cast<int>(dim_x[2] * scale);
|
|
out_w = static_cast<int>(dim_x[3] * scale);
|
|
// protect when input shape is -1
|
|
out_h = out_h > 0 ? out_h : -1;
|
|
out_w = out_w > 0 ? out_w : -1;
|
|
} else {
|
|
out_h = ctx->Attrs().Get<int>("out_h");
|
|
out_w = ctx->Attrs().Get<int>("out_w");
|
|
PADDLE_ENFORCE_GT(out_h, 0, "out_h should be greater than 0.");
|
|
PADDLE_ENFORCE_GT(out_w, 0, "out_w should be greater than 0.");
|
|
}
|
|
|
|
if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
|
|
auto out_size_dim = ctx->GetInputDim("OutSize");
|
|
PADDLE_ENFORCE_EQ(out_size_dim.size(), 1,
|
|
"OutSize's dimension size must be 1");
|
|
PADDLE_ENFORCE_EQ(out_size_dim[0], 2, "OutSize's dim[0] must be 2");
|
|
ctx->ShareLoD("X", "Out");
|
|
return;
|
|
}
|
|
|
|
std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_h, out_w});
|
|
ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"The input tensor of interpolate operator, "
|
|
"This is a 4-D tensor with shape of [N, C, H, w].");
|
|
AddInput("OutSize",
|
|
"This is a 1-D tensor with two numbers to specify output size. "
|
|
"The first number is height and the second number is width.")
|
|
.AsDispensable();
|
|
AddOutput("Out",
|
|
"The output tensor of interpolate operator, "
|
|
"This is a 4-D tensor with shape of [N, C, H, W].");
|
|
|
|
AddAttr<int>("out_h", "output height of interpolate op.");
|
|
AddAttr<int>("out_w", "output width of interpolate op.");
|
|
AddAttr<float>("scale", "scale factor of interpolate op.").SetDefault(0.);
|
|
AddAttr<std::string>("interp_method",
|
|
"(string, default \"bilinear\"), interpolation "
|
|
"method, can be \"bilinear\" for "
|
|
"bilinear interpolation and \"nearest\" for nearest "
|
|
"neighbor interpolation.")
|
|
.SetDefault("bilinear");
|
|
AddAttr<bool>(
|
|
"align_corners",
|
|
"an optional bool. Defaults to True. "
|
|
"If True, the centers of 4 corner pixels of the input and output "
|
|
"tensors are aligned, preserving the values at the corner pixels, "
|
|
"If False, are not aligned")
|
|
.SetDefault(true);
|
|
AddAttr<int>("align_mode",
|
|
"(int, default \'1\'), optional for bilinear interpolation, "
|
|
"can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 , "
|
|
"can be \'1\' for src_idx = scale*dst_index .")
|
|
.SetDefault(1);
|
|
AddComment(R"DOC(
|
|
This operator samples input X to given output shape by using specified
|
|
interpolation method, the interpolation methods can be \"nearest\"
|
|
for nearest neighbor interpolation and \"bilinear\" for bilinear
|
|
interpolation.
|
|
|
|
Nearest neighbor interpolation is to perform nearest neighbor interpolation
|
|
in both the 3rd dimention(in height direction) and the 4th dimention(in width
|
|
direction) on input tensor.
|
|
|
|
Bilinear interpolation is an extension of linear interpolation for
|
|
interpolating functions of two variables (e.g. H-direction and
|
|
W-direction in this op) on a rectilinear 2D grid. The key idea is
|
|
to perform linear interpolation first in one direction, and then
|
|
again in the other direction.
|
|
|
|
Align_corners and align_mode are optinal parameters,the calculation method
|
|
of interpolation can be selected by them.
|
|
|
|
Example:
|
|
|
|
For scale:
|
|
|
|
if align_corners = True and out_{size}>1 :
|
|
|
|
scale_{factor} = (in_{size}-1.0)/(out_{size}-1.0)
|
|
|
|
else:
|
|
|
|
scale_{factor} = float(in_{size}/out_{size})
|
|
|
|
|
|
Nearest neighbor interpolation:
|
|
|
|
if:
|
|
align_corners = False
|
|
|
|
input : (N,C,H_in,W_in)
|
|
output: (N,C,H_out,W_out) where:
|
|
|
|
H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
|
|
W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor
|
|
|
|
else:
|
|
align_corners = True
|
|
|
|
input : (N,C,H_in,W_in)
|
|
output: (N,C,H_out,W_out) where:
|
|
|
|
H_out = round(H_{in} * scale_{factor})
|
|
W_out = round(W_{in} * scale_{factor})
|
|
|
|
Bilinear interpolation:
|
|
|
|
if:
|
|
align_corners = False , align_mode = 0
|
|
|
|
input : (N,C,H_in,W_in)
|
|
output: (N,C,H_out,W_out) where:
|
|
|
|
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
|
|
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
|
|
|
|
|
|
else:
|
|
|
|
input : (N,C,H_in,W_in)
|
|
output: (N,C,H_out,W_out) where:
|
|
|
|
H_out = H_{in} * scale_{factor}
|
|
W_out = W_{in} * scale_{factor}
|
|
|
|
|
|
|
|
For details of nearest neighbor interpolation, please refer to Wikipedia:
|
|
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
|
|
|
|
For details of bilinear interpolation, please refer to Wikipedia:
|
|
https://en.wikipedia.org/wiki/Bilinear_interpolation
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class InterpolateOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null");
|
|
auto dim_x = ctx->GetInputDim("X");
|
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
|
|
}
|
|
}
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class InterpolateGradDescMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
|
|
op->SetType(ForwardOp().Type() + "_grad");
|
|
op->SetInput("X", Input("X"));
|
|
if (ForwardOp().Inputs().count("OutSize") > 0) {
|
|
op->SetInput("OutSize", Input("OutSize"));
|
|
}
|
|
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
|
op->SetAttrMap(Attrs());
|
|
return op;
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(InterpolateGradNoNeedBufferVarsInference,
|
|
"X");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(bilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
|
|
ops::InterpolateGradDescMaker);
|
|
REGISTER_OPERATOR(bilinear_interp_grad, ops::InterpolateOpGrad,
|
|
ops::InterpolateGradNoNeedBufferVarsInference);
|
|
REGISTER_OPERATOR(nearest_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
|
|
ops::InterpolateGradDescMaker);
|
|
REGISTER_OPERATOR(nearest_interp_grad, ops::InterpolateOpGrad,
|
|
ops::InterpolateGradNoNeedBufferVarsInference);
|
|
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::InterpolateKernel<float>,
|
|
ops::InterpolateKernel<double>,
|
|
ops::InterpolateKernel<uint8_t>);
|
|
REGISTER_OP_CPU_KERNEL(bilinear_interp_grad, ops::InterpolateGradKernel<float>,
|
|
ops::InterpolateGradKernel<double>);
|
|
REGISTER_OP_CPU_KERNEL(nearest_interp, ops::InterpolateKernel<float>,
|
|
ops::InterpolateKernel<double>,
|
|
ops::InterpolateKernel<uint8_t>);
|
|
REGISTER_OP_CPU_KERNEL(nearest_interp_grad, ops::InterpolateGradKernel<float>,
|
|
ops::InterpolateGradKernel<double>);
|