You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/scatter.cu.h

114 lines
4.0 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <unordered_set>
#include "math/math_function.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
template <typename T, typename IndexT = int>
__global__ void ScatterInitCUDAKernel(const IndexT* indices, T* output,
size_t index_size, size_t slice_size,
bool overwrite) {
CUDA_1D_KERNEL_LOOP(i, index_size * slice_size) {
int indices_i = i / slice_size;
int slice_i = i - indices_i * slice_size; // offset inside the slice
IndexT scatter_i = indices[indices_i];
IndexT out_i = scatter_i * slice_size + slice_i;
*(output + out_i) = static_cast<T>(0);
}
}
template <typename T, typename IndexT = int>
__global__ void ScatterCUDAKernel(const T* params, const IndexT* indices,
T* output, size_t index_size,
size_t slice_size, bool overwrite) {
CUDA_1D_KERNEL_LOOP(i, index_size * slice_size) {
int indices_i = i / slice_size;
int slice_i = i - indices_i * slice_size; // offset inside the slice
IndexT scatter_i = indices[indices_i];
IndexT out_i = scatter_i * slice_size + slice_i;
if (overwrite) {
*(output + out_i) = *(params + i);
} else {
paddle::platform::CudaAtomicAdd(output + out_i, *(params + i));
}
}
}
/**
* A thin wrapper on gpu tensor
* Return a new updated tensor from source tensor, scatter-assigned according to
* index
* input[src]: type-T source Tensor
* input[index]: type-IndexT index Tensor (1-D)
* return: output tensor
*/
template <typename T, typename IndexT = int>
void GPUScatterAssign(const framework::ExecutionContext& context,
const Tensor& src, const Tensor& index, Tensor* output,
bool overwrite = true) {
// PADDLE_ENFORCE(platform::is_gpu_place(place));
// check index of shape 1-D
const auto& ctx = context.device_context();
PADDLE_ENFORCE(index.dims().size() == 1 ||
(index.dims().size() == 2 && index.dims()[1] == 1));
int index_size = index.dims()[0];
auto src_dims = src.dims();
framework::DDim output_dims(src_dims);
output_dims[0] = index_size;
// slice size
int slice_size = 1;
for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];
const T* p_src = src.data<T>();
const IndexT* p_index = index.data<IndexT>();
T* p_output = output->data<T>();
const size_t& slice_bytes = slice_size * sizeof(T);
// set block and grid num
int block = 512;
int n = slice_size * index_size;
int grid = (n + block - 1) / block;
// if not overwrite mode, init data
if (!overwrite) {
ScatterInitCUDAKernel<T, IndexT><<<
grid, block, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
p_index, p_output, index_size, slice_size, overwrite);
}
ScatterCUDAKernel<T, IndexT><<<
grid, block, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
p_src, p_index, p_output, index_size, slice_size, overwrite);
}
} // namespace operators
} // namespace paddle