You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
87 lines
3.1 KiB
87 lines
3.1 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using LoDTensor = framework::LoDTensor;
|
|
template <typename DeviceContext, typename T>
|
|
class SequenceReshapeKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* in = context.Input<LoDTensor>("X");
|
|
auto* out = context.Output<LoDTensor>("Out");
|
|
int out_width = context.Attr<int>("new_dim");
|
|
|
|
auto in_dims = in->dims();
|
|
int64_t in_width = in_dims[1];
|
|
auto& in_lod = in->lod();
|
|
|
|
PADDLE_ENFORCE_EQ(in_lod.size(), 1UL,
|
|
"Only support one level sequence now.");
|
|
PADDLE_ENFORCE_EQ(
|
|
(uint64_t)in_dims[0], in_lod[0].back(),
|
|
"Inconsistent size between X.shape[0] and X.lod()[0].back().");
|
|
|
|
auto in_lod_l0 = in_lod[0];
|
|
int seq_num = in_lod_l0.size() - 1;
|
|
|
|
if (in_width == out_width) {
|
|
out->set_lod(in->lod());
|
|
} else {
|
|
auto& out_lod = *out->mutable_lod();
|
|
out_lod.resize(1);
|
|
out_lod[0].resize(seq_num + 1);
|
|
out_lod[0][0] = 0;
|
|
for (int i = 0; i < seq_num; ++i) {
|
|
size_t seq_len = in_lod_l0[i + 1] - in_lod_l0[i];
|
|
size_t offset = 0;
|
|
offset = (seq_len * in_width) / out_width;
|
|
PADDLE_ENFORCE_EQ(offset * out_width, seq_len * in_width,
|
|
"Please make sure (sequence_length * dimension) can "
|
|
"be divided by new_dim with no remainder for each "
|
|
"sequence. The %dth sequence is invalid.",
|
|
i + 1);
|
|
out_lod[0][i + 1] = out_lod[0][i] + offset;
|
|
}
|
|
}
|
|
|
|
framework::TensorCopy(*in, context.GetPlace(), out);
|
|
out->Resize({static_cast<int64_t>(out->lod()[0].back()), out_width});
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SequenceReshapeGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* x_tensor_ptr = context.Input<LoDTensor>("X");
|
|
auto* outg_tensor_ptr =
|
|
context.Input<LoDTensor>(framework::GradVarName("Out"));
|
|
auto* xg_tensor_ptr =
|
|
context.Output<LoDTensor>(framework::GradVarName("X"));
|
|
|
|
xg_tensor_ptr->mutable_data<T>(context.GetPlace());
|
|
framework::TensorCopy(*outg_tensor_ptr, context.GetPlace(), xg_tensor_ptr);
|
|
xg_tensor_ptr->Resize(x_tensor_ptr->dims());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|