You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
6.3 KiB
170 lines
6.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/sequence_ops/sequence_softmax_op.h"
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SequenceSoftmaxOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of SequenceSoftmaxOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of SequenceSoftmaxOp should not be null.");
|
|
|
|
ctx->ShareDim("X", /*->*/ "Out");
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
// choose cudnn kernel if the runtime supported.
|
|
bool use_cudnn = ctx.Attr<bool>("use_cudnn");
|
|
bool runtime_cudnn_support = false;
|
|
#ifdef PADDLE_WITH_CUDA
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
auto& dev_ctx =
|
|
ctx.template device_context<platform::CUDADeviceContext>();
|
|
runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
|
|
}
|
|
#endif
|
|
framework::LibraryType library_ = framework::LibraryType::kPlain;
|
|
if (use_cudnn && runtime_cudnn_support) {
|
|
library_ = framework::LibraryType::kCUDNN;
|
|
}
|
|
std::string data_format = ctx.Attr<std::string>("data_format");
|
|
return framework::OpKernelType(
|
|
ctx.Input<Tensor>("X")->type(), ctx.GetPlace(),
|
|
framework::StringToDataLayout(data_format), library_);
|
|
}
|
|
};
|
|
|
|
class SequenceSoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension "
|
|
"of length 1.");
|
|
AddOutput("Out",
|
|
"(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension "
|
|
"of length 1.");
|
|
AddAttr<bool>(
|
|
"use_cudnn",
|
|
"(bool, default false) Only used in cudnn kernel, need install cudnn")
|
|
.SetDefault(false);
|
|
AddAttr<std::string>(
|
|
"data_format",
|
|
"(string, default NCHW) Only used in "
|
|
"An optional string from: \"NHWC\", \"NCHW\". "
|
|
"Defaults to \"NHWC\". Specify the data format of the output data, "
|
|
"the input will be transformed automatically. ")
|
|
.SetDefault("AnyLayout");
|
|
AddComment(R"DOC(
|
|
Sequence Softmax Operator.
|
|
|
|
SequenceSoftmaxOp computes the softmax activation among all time-steps for each
|
|
sequence. The dimension of each time-step should be 1. Thus, the shape of
|
|
input Tensor can be either [N, 1] or [N], where N is the sum of the length
|
|
of all sequences.
|
|
|
|
The algorithm works as follows:
|
|
|
|
for i-th sequence in a mini-batch:
|
|
|
|
$$
|
|
Out(X[lod[i]:lod[i+1]], :) = \
|
|
\frac{\exp(X[lod[i]:lod[i+1], :])} \
|
|
{\sum(\exp(X[lod[i]:lod[i+1], :]))}
|
|
$$
|
|
|
|
For example, for a mini-batch of 3 sequences with variable-length,
|
|
each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
|
|
then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :]
|
|
and N turns out to be 7.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SequenceSoftmaxGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Out"),
|
|
"Input(Out) of SequenceSoftmaxGradOp should not be null.");
|
|
PADDLE_ENFORCE(
|
|
ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) of SequenceSoftmaxGradOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of SequenceSoftmaxOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
|
"Output(X@GRAD) of SequenceSoftmaxOp should not be null.");
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->GetInputDim("Out"),
|
|
ctx->GetInputDim(framework::GradVarName("Out")),
|
|
"Input(Out) and Input(Out@GRAD) of SequenceSoftmaxGradOp should be of "
|
|
"the same shape.");
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
// choose cudnn kernel if the runtime supported.
|
|
bool use_cudnn = ctx.Attr<bool>("use_cudnn");
|
|
bool runtime_cudnn_support = false;
|
|
#ifdef PADDLE_WITH_CUDA
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
auto& dev_ctx =
|
|
ctx.template device_context<platform::CUDADeviceContext>();
|
|
runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
|
|
}
|
|
#endif
|
|
framework::LibraryType library_ = framework::LibraryType::kPlain;
|
|
if (use_cudnn && runtime_cudnn_support) {
|
|
library_ = framework::LibraryType::kCUDNN;
|
|
}
|
|
std::string data_format = ctx.Attr<std::string>("data_format");
|
|
return framework::OpKernelType(
|
|
ctx.Input<Tensor>("X")->type(), ctx.GetPlace(),
|
|
framework::StringToDataLayout(data_format), library_);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(sequence_softmax, ops::SequenceSoftmaxOp,
|
|
ops::SequenceSoftmaxOpMaker,
|
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
|
REGISTER_OPERATOR(sequence_softmax_grad, ops::SequenceSoftmaxGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sequence_softmax,
|
|
ops::SequenceSoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SequenceSoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sequence_softmax_grad,
|
|
ops::SequenceSoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SequenceSoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);
|