You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
218 lines
6.6 KiB
218 lines
6.6 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <algorithm>
|
|
#include <utility>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SliceKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
int rank = ctx.Input<framework::Tensor>("Input")->dims().size();
|
|
switch (rank) {
|
|
case 1:
|
|
SliceCompute<1>(ctx);
|
|
break;
|
|
case 2:
|
|
SliceCompute<2>(ctx);
|
|
break;
|
|
case 3:
|
|
SliceCompute<3>(ctx);
|
|
break;
|
|
case 4:
|
|
SliceCompute<4>(ctx);
|
|
break;
|
|
case 5:
|
|
SliceCompute<5>(ctx);
|
|
break;
|
|
case 6:
|
|
SliceCompute<6>(ctx);
|
|
break;
|
|
}
|
|
}
|
|
|
|
private:
|
|
template <size_t D>
|
|
void SliceCompute(const framework::ExecutionContext& context) const {
|
|
auto& place =
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
auto in = context.Input<framework::Tensor>("Input");
|
|
auto out = context.Output<framework::Tensor>("Out");
|
|
auto out_dims = out->dims();
|
|
auto in_dims = in->dims();
|
|
|
|
// resize out_dims
|
|
auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
|
|
if (decrease_axis.size() > 0) {
|
|
if (decrease_axis.size() == (size_t)in_dims.size()) {
|
|
std::vector<int> vec_origin_out_shape(decrease_axis.size(), 1);
|
|
out->Resize(framework::make_ddim(vec_origin_out_shape));
|
|
} else {
|
|
std::vector<int> vec_origin_out_shape(
|
|
out_dims.size() + decrease_axis.size(), -1);
|
|
|
|
for (size_t i = 0; i < decrease_axis.size(); ++i) {
|
|
vec_origin_out_shape[decrease_axis[i]] = 1;
|
|
}
|
|
|
|
int index = 0;
|
|
for (size_t i = 0; i < vec_origin_out_shape.size(); ++i) {
|
|
if (vec_origin_out_shape[i] == -1) {
|
|
vec_origin_out_shape[i] = out_dims[index];
|
|
++index;
|
|
}
|
|
}
|
|
|
|
out->Resize(framework::make_ddim(vec_origin_out_shape));
|
|
}
|
|
}
|
|
|
|
out->mutable_data<T>(context.GetPlace());
|
|
auto axes = context.Attr<std::vector<int>>("axes");
|
|
auto starts = context.Attr<std::vector<int>>("starts");
|
|
|
|
auto new_out_dims = out->dims();
|
|
auto offsets = Eigen::array<int, D>();
|
|
auto extents = Eigen::array<int, D>();
|
|
for (size_t i = 0; i < D; ++i) {
|
|
offsets[i] = 0;
|
|
extents[i] = new_out_dims[i];
|
|
}
|
|
int start;
|
|
for (size_t i = 0; i < axes.size(); ++i) {
|
|
start = starts[i];
|
|
if (start < 0) {
|
|
start = (start + in_dims[axes[i]]);
|
|
}
|
|
start = std::max(start, 0);
|
|
offsets[axes[i]] = start;
|
|
}
|
|
auto in_t =
|
|
framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
|
|
*in);
|
|
auto out_t =
|
|
framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
|
|
*out, new_out_dims);
|
|
out_t.device(place) = in_t.slice(offsets, extents);
|
|
|
|
out->Resize(out_dims);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SliceGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
size_t rank = ctx.Input<framework::Tensor>("Input")->dims().size();
|
|
switch (rank) {
|
|
case 1:
|
|
SliceCompute<1>(ctx);
|
|
break;
|
|
case 2:
|
|
SliceCompute<2>(ctx);
|
|
break;
|
|
case 3:
|
|
SliceCompute<3>(ctx);
|
|
break;
|
|
case 4:
|
|
SliceCompute<4>(ctx);
|
|
break;
|
|
case 5:
|
|
SliceCompute<5>(ctx);
|
|
break;
|
|
case 6:
|
|
SliceCompute<6>(ctx);
|
|
break;
|
|
}
|
|
}
|
|
|
|
private:
|
|
template <size_t D>
|
|
void SliceCompute(const framework::ExecutionContext& context) const {
|
|
auto& place =
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
auto* d_out =
|
|
context.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto* d_input =
|
|
context.Output<framework::Tensor>(framework::GradVarName("Input"));
|
|
d_input->mutable_data<T>(context.GetPlace());
|
|
auto out_dims = d_out->dims();
|
|
auto in_dims = d_input->dims();
|
|
auto axes = context.Attr<std::vector<int>>("axes");
|
|
auto starts = context.Attr<std::vector<int>>("starts");
|
|
|
|
auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
|
|
if (decrease_axis.size() > 0) {
|
|
if (decrease_axis.size() == (size_t)in_dims.size()) {
|
|
// all dims decrease
|
|
std::vector<int> vec_origin_out_shape(decrease_axis.size(), 1);
|
|
out_dims = framework::make_ddim(vec_origin_out_shape);
|
|
} else {
|
|
std::vector<int> vec_origin_out_shape(
|
|
out_dims.size() + decrease_axis.size(), -1);
|
|
|
|
for (size_t i = 0; i < decrease_axis.size(); ++i) {
|
|
vec_origin_out_shape[decrease_axis[i]] = 1;
|
|
}
|
|
|
|
int index = 0;
|
|
for (size_t i = 0; i < vec_origin_out_shape.size(); ++i) {
|
|
if (vec_origin_out_shape[i] == -1) {
|
|
vec_origin_out_shape[i] = out_dims[index];
|
|
++index;
|
|
}
|
|
}
|
|
|
|
out_dims = framework::make_ddim(vec_origin_out_shape);
|
|
}
|
|
}
|
|
|
|
auto offsets = Eigen::array<int, D>();
|
|
auto extents = Eigen::array<int, D>();
|
|
for (size_t i = 0; i < D; ++i) {
|
|
offsets[i] = 0;
|
|
extents[i] = out_dims[i];
|
|
}
|
|
int start;
|
|
for (size_t i = 0; i < axes.size(); ++i) {
|
|
start = starts[i];
|
|
if (start < 0) {
|
|
start = (start + in_dims[axes[i]]);
|
|
}
|
|
start = std::max(start, 0);
|
|
offsets[axes[i]] = start;
|
|
}
|
|
Eigen::array<std::pair<int, int>, D> paddings;
|
|
for (size_t i = 0; i < paddings.size(); ++i) {
|
|
paddings[i].first = offsets[i];
|
|
paddings[i].second = (in_dims[i] - out_dims[i]) - offsets[i];
|
|
}
|
|
auto d_in_t =
|
|
framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
|
|
*d_input);
|
|
auto d_out_t =
|
|
framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
|
|
*d_out, out_dims);
|
|
d_in_t.device(place) = d_out_t.pad(paddings, 0);
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|