You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/fluid/tests/test_layers.py

172 lines
5.8 KiB

import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets
from paddle.v2.fluid.framework import Program
import paddle.v2.fluid.core as core
import unittest
class TestBook(unittest.TestCase):
def test_fit_a_line(self):
program = Program()
x = layers.data(
name='x', shape=[13], data_type='float32', main_program=program)
y_predict = layers.fc(input=x, size=1, act=None, main_program=program)
y = layers.data(
name='y', shape=[1], data_type='float32', main_program=program)
cost = layers.square_error_cost(
input=y_predict, label=y, main_program=program)
avg_cost = layers.mean(x=cost, main_program=program)
self.assertIsNotNone(avg_cost)
program.append_backward(avg_cost)
print str(program)
def test_recognize_digits_mlp(self):
program = Program()
# Change g_program, so the rest layers use `g_program`
images = layers.data(
name='pixel',
shape=[784],
data_type='float32',
main_program=program)
label = layers.data(
name='label', shape=[1], data_type='int32', main_program=program)
hidden1 = layers.fc(input=images,
size=128,
act='relu',
main_program=program)
hidden2 = layers.fc(input=hidden1,
size=64,
act='relu',
main_program=program)
predict = layers.fc(input=hidden2,
size=10,
act='softmax',
main_program=program)
cost = layers.cross_entropy(
input=predict, label=label, main_program=program)
avg_cost = layers.mean(x=cost, main_program=program)
self.assertIsNotNone(avg_cost)
print str(program)
def test_simple_conv2d(self):
program = Program()
images = layers.data(
name='pixel',
shape=[3, 48, 48],
data_type='int32',
main_program=program)
layers.conv2d(
input=images,
num_filters=3,
filter_size=[4, 4],
main_program=program)
print str(program)
def test_recognize_digits_conv(self):
program = Program()
images = layers.data(
name='pixel',
shape=[1, 28, 28],
data_type='float32',
main_program=program)
label = layers.data(
name='label', shape=[1], data_type='int32', main_program=program)
conv_pool_1 = nets.simple_img_conv_pool(
input=images,
filter_size=5,
num_filters=2,
pool_size=2,
pool_stride=2,
act="relu",
main_program=program)
conv_pool_2 = nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=4,
pool_size=2,
pool_stride=2,
act="relu",
main_program=program)
predict = layers.fc(input=conv_pool_2,
size=10,
act="softmax",
main_program=program)
cost = layers.cross_entropy(
input=predict, label=label, main_program=program)
avg_cost = layers.mean(x=cost, main_program=program)
program.append_backward(avg_cost)
print str(program)
def test_word_embedding(self):
program = Program()
dict_size = 10000
embed_size = 32
first_word = layers.data(
name='firstw', shape=[1], data_type='int64', main_program=program)
second_word = layers.data(
name='secondw', shape=[1], data_type='int64', main_program=program)
third_word = layers.data(
name='thirdw', shape=[1], data_type='int64', main_program=program)
forth_word = layers.data(
name='forthw', shape=[1], data_type='int64', main_program=program)
next_word = layers.data(
name='nextw', shape=[1], data_type='int64', main_program=program)
embed_first = layers.embedding(
input=first_word,
size=[dict_size, embed_size],
data_type='float32',
param_attr={'name': 'shared_w'},
main_program=program)
embed_second = layers.embedding(
input=second_word,
size=[dict_size, embed_size],
data_type='float32',
param_attr={'name': 'shared_w'},
main_program=program)
embed_third = layers.embedding(
input=third_word,
size=[dict_size, embed_size],
data_type='float32',
param_attr={'name': 'shared_w'},
main_program=program)
embed_forth = layers.embedding(
input=forth_word,
size=[dict_size, embed_size],
data_type='float32',
param_attr={'name': 'shared_w'},
main_program=program)
concat_embed = layers.concat(
input=[embed_first, embed_second, embed_third, embed_forth],
axis=1,
main_program=program)
hidden1 = layers.fc(input=concat_embed,
size=256,
act='sigmoid',
main_program=program)
predict_word = layers.fc(input=hidden1,
size=dict_size,
act='softmax',
main_program=program)
cost = layers.cross_entropy(
input=predict_word, label=next_word, main_program=program)
avg_cost = layers.mean(x=cost, main_program=program)
self.assertIsNotNone(avg_cost)
print str(program)
if __name__ == '__main__':
unittest.main()