You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
5.8 KiB
172 lines
5.8 KiB
import paddle.v2.fluid.layers as layers
|
|
import paddle.v2.fluid.nets as nets
|
|
from paddle.v2.fluid.framework import Program
|
|
import paddle.v2.fluid.core as core
|
|
import unittest
|
|
|
|
|
|
class TestBook(unittest.TestCase):
|
|
def test_fit_a_line(self):
|
|
program = Program()
|
|
x = layers.data(
|
|
name='x', shape=[13], data_type='float32', main_program=program)
|
|
y_predict = layers.fc(input=x, size=1, act=None, main_program=program)
|
|
|
|
y = layers.data(
|
|
name='y', shape=[1], data_type='float32', main_program=program)
|
|
cost = layers.square_error_cost(
|
|
input=y_predict, label=y, main_program=program)
|
|
|
|
avg_cost = layers.mean(x=cost, main_program=program)
|
|
self.assertIsNotNone(avg_cost)
|
|
program.append_backward(avg_cost)
|
|
print str(program)
|
|
|
|
def test_recognize_digits_mlp(self):
|
|
program = Program()
|
|
|
|
# Change g_program, so the rest layers use `g_program`
|
|
images = layers.data(
|
|
name='pixel',
|
|
shape=[784],
|
|
data_type='float32',
|
|
main_program=program)
|
|
label = layers.data(
|
|
name='label', shape=[1], data_type='int32', main_program=program)
|
|
hidden1 = layers.fc(input=images,
|
|
size=128,
|
|
act='relu',
|
|
main_program=program)
|
|
hidden2 = layers.fc(input=hidden1,
|
|
size=64,
|
|
act='relu',
|
|
main_program=program)
|
|
predict = layers.fc(input=hidden2,
|
|
size=10,
|
|
act='softmax',
|
|
main_program=program)
|
|
cost = layers.cross_entropy(
|
|
input=predict, label=label, main_program=program)
|
|
avg_cost = layers.mean(x=cost, main_program=program)
|
|
self.assertIsNotNone(avg_cost)
|
|
print str(program)
|
|
|
|
def test_simple_conv2d(self):
|
|
program = Program()
|
|
images = layers.data(
|
|
name='pixel',
|
|
shape=[3, 48, 48],
|
|
data_type='int32',
|
|
main_program=program)
|
|
layers.conv2d(
|
|
input=images,
|
|
num_filters=3,
|
|
filter_size=[4, 4],
|
|
main_program=program)
|
|
|
|
print str(program)
|
|
|
|
def test_recognize_digits_conv(self):
|
|
program = Program()
|
|
|
|
images = layers.data(
|
|
name='pixel',
|
|
shape=[1, 28, 28],
|
|
data_type='float32',
|
|
main_program=program)
|
|
label = layers.data(
|
|
name='label', shape=[1], data_type='int32', main_program=program)
|
|
conv_pool_1 = nets.simple_img_conv_pool(
|
|
input=images,
|
|
filter_size=5,
|
|
num_filters=2,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
act="relu",
|
|
main_program=program)
|
|
conv_pool_2 = nets.simple_img_conv_pool(
|
|
input=conv_pool_1,
|
|
filter_size=5,
|
|
num_filters=4,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
act="relu",
|
|
main_program=program)
|
|
|
|
predict = layers.fc(input=conv_pool_2,
|
|
size=10,
|
|
act="softmax",
|
|
main_program=program)
|
|
cost = layers.cross_entropy(
|
|
input=predict, label=label, main_program=program)
|
|
avg_cost = layers.mean(x=cost, main_program=program)
|
|
|
|
program.append_backward(avg_cost)
|
|
|
|
print str(program)
|
|
|
|
def test_word_embedding(self):
|
|
program = Program()
|
|
dict_size = 10000
|
|
embed_size = 32
|
|
first_word = layers.data(
|
|
name='firstw', shape=[1], data_type='int64', main_program=program)
|
|
second_word = layers.data(
|
|
name='secondw', shape=[1], data_type='int64', main_program=program)
|
|
third_word = layers.data(
|
|
name='thirdw', shape=[1], data_type='int64', main_program=program)
|
|
forth_word = layers.data(
|
|
name='forthw', shape=[1], data_type='int64', main_program=program)
|
|
next_word = layers.data(
|
|
name='nextw', shape=[1], data_type='int64', main_program=program)
|
|
|
|
embed_first = layers.embedding(
|
|
input=first_word,
|
|
size=[dict_size, embed_size],
|
|
data_type='float32',
|
|
param_attr={'name': 'shared_w'},
|
|
main_program=program)
|
|
embed_second = layers.embedding(
|
|
input=second_word,
|
|
size=[dict_size, embed_size],
|
|
data_type='float32',
|
|
param_attr={'name': 'shared_w'},
|
|
main_program=program)
|
|
|
|
embed_third = layers.embedding(
|
|
input=third_word,
|
|
size=[dict_size, embed_size],
|
|
data_type='float32',
|
|
param_attr={'name': 'shared_w'},
|
|
main_program=program)
|
|
embed_forth = layers.embedding(
|
|
input=forth_word,
|
|
size=[dict_size, embed_size],
|
|
data_type='float32',
|
|
param_attr={'name': 'shared_w'},
|
|
main_program=program)
|
|
|
|
concat_embed = layers.concat(
|
|
input=[embed_first, embed_second, embed_third, embed_forth],
|
|
axis=1,
|
|
main_program=program)
|
|
|
|
hidden1 = layers.fc(input=concat_embed,
|
|
size=256,
|
|
act='sigmoid',
|
|
main_program=program)
|
|
predict_word = layers.fc(input=hidden1,
|
|
size=dict_size,
|
|
act='softmax',
|
|
main_program=program)
|
|
cost = layers.cross_entropy(
|
|
input=predict_word, label=next_word, main_program=program)
|
|
avg_cost = layers.mean(x=cost, main_program=program)
|
|
self.assertIsNotNone(avg_cost)
|
|
|
|
print str(program)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|