You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
76 lines
2.4 KiB
76 lines
2.4 KiB
import unittest
|
|
import paddle.v2.fluid.layers as layers
|
|
from paddle.v2.fluid.executor import Executor
|
|
import paddle.v2.fluid.core as core
|
|
from paddle.v2.fluid.backward import append_backward_ops
|
|
import numpy
|
|
|
|
|
|
class TestWhileOp(unittest.TestCase):
|
|
def test_simple_forward(self):
|
|
d0 = layers.data(
|
|
"d0", shape=[10], append_batch_size=False, data_type='float32')
|
|
d1 = layers.data(
|
|
"d1", shape=[10], append_batch_size=False, data_type='float32')
|
|
d2 = layers.data(
|
|
"d2", shape=[10], append_batch_size=False, data_type='float32')
|
|
i = layers.zeros(shape=[1], dtype='int64')
|
|
i.stop_gradient = True
|
|
init = layers.zeros(shape=[10], dtype='float32')
|
|
mem_array = layers.array_write(x=init, i=i)
|
|
data_array = layers.array_write(x=d0, i=i)
|
|
|
|
i = layers.increment(i)
|
|
layers.array_write(d1, i, array=data_array)
|
|
|
|
i = layers.increment(i)
|
|
layers.array_write(d2, i, array=data_array)
|
|
|
|
i = layers.zeros(shape=[1], dtype='int64')
|
|
i.stop_gradient = True
|
|
|
|
array_len = layers.fill_constant(shape=[1], dtype='int64', value=3)
|
|
array_len.stop_gradient = True
|
|
cond = layers.less_than(x=i, y=array_len)
|
|
|
|
while_op = layers.While(cond=cond)
|
|
with while_op.block():
|
|
d = layers.array_read(array=data_array, i=i)
|
|
prev = layers.array_read(array=mem_array, i=i)
|
|
result = layers.sums(input=[d, prev])
|
|
|
|
i = layers.increment(x=i, in_place=True)
|
|
layers.array_write(result, i=i, array=mem_array)
|
|
layers.less_than(x=i, y=array_len, cond=cond)
|
|
|
|
sum_result = layers.array_read(array=mem_array, i=i)
|
|
loss = layers.mean(x=sum_result)
|
|
|
|
append_backward_ops(loss)
|
|
|
|
cpu = core.CPUPlace()
|
|
exe = Executor(cpu)
|
|
d = []
|
|
|
|
for i in xrange(3):
|
|
d.append(numpy.random.random(size=[10]).astype('float32'))
|
|
|
|
d_tensor = []
|
|
for item in d:
|
|
t = core.LoDTensor()
|
|
t.set(item, cpu)
|
|
d_tensor.append(t)
|
|
|
|
outs = map(numpy.array,
|
|
exe.run(feed={
|
|
'd0': d_tensor[0],
|
|
'd1': d_tensor[1],
|
|
'd2': d_tensor[2]
|
|
},
|
|
fetch_list=[sum_result]))
|
|
self.assertAlmostEqual(numpy.sum(d), numpy.sum(outs[0]), delta=0.01)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|