You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
408 lines
13 KiB
408 lines
13 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "GemmConvOp.h"
|
|
#include "GemmFunctor.h"
|
|
#include "paddle/math/MemoryHandle.h"
|
|
|
|
namespace paddle {
|
|
|
|
/*
|
|
* imData = [input_channels, input_height, input_width]
|
|
* colData = [input_channels, filter_height, filter_width,
|
|
* output_height, output_width]
|
|
*/
|
|
template <class T>
|
|
class Im2ColFunctor<DEVICE_TYPE_CPU, T> {
|
|
public:
|
|
void operator()(const T* imData,
|
|
int inputChannels,
|
|
int inputHeight,
|
|
int inputWidth,
|
|
int filterHeight,
|
|
int filterWidth,
|
|
int strideHeight,
|
|
int strideWidth,
|
|
int paddingHeight,
|
|
int paddingWidth,
|
|
int outputHeight,
|
|
int outputWidth,
|
|
T* colData) {
|
|
int channelsCol = inputChannels * filterHeight * filterWidth;
|
|
|
|
for (int c = 0; c < channelsCol; ++c) {
|
|
int wOffset = c % filterWidth;
|
|
int hOffset = (c / filterWidth) % filterHeight;
|
|
int c_im = c / filterWidth / filterHeight;
|
|
for (int h = 0; h < outputHeight; ++h) {
|
|
for (int w = 0; w < outputWidth; ++w) {
|
|
int imRowIdx = h * strideHeight + hOffset;
|
|
int imColIdx = w * strideWidth + wOffset;
|
|
if ((imRowIdx - paddingHeight) < 0 ||
|
|
(imRowIdx - paddingHeight) >= inputHeight ||
|
|
(imColIdx - paddingWidth) < 0 ||
|
|
(imColIdx - paddingWidth) >= inputWidth) {
|
|
colData[(c * outputHeight + h) * outputWidth + w] = T(0);
|
|
} else {
|
|
imRowIdx += c_im * inputHeight - paddingHeight;
|
|
imColIdx -= paddingWidth;
|
|
colData[(c * outputHeight + h) * outputWidth + w] =
|
|
imData[imRowIdx * inputWidth + imColIdx];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <class T>
|
|
class Col2ImFunctor<DEVICE_TYPE_CPU, T> {
|
|
public:
|
|
void operator()(const T* colData,
|
|
int inputChannels,
|
|
int inputHeight,
|
|
int inputWidth,
|
|
int filterHeight,
|
|
int filterWidth,
|
|
int strideHeight,
|
|
int strideWidth,
|
|
int paddingHeight,
|
|
int paddingWidth,
|
|
int outputHeight,
|
|
int outputWidth,
|
|
T* imData) {
|
|
int channelsCol = inputChannels * filterHeight * filterWidth;
|
|
|
|
for (int c = 0; c < channelsCol; ++c) {
|
|
int wOffset = c % filterWidth;
|
|
int hOffset = (c / filterWidth) % filterHeight;
|
|
int c_im = c / filterWidth / filterHeight;
|
|
for (int h = 0; h < outputHeight; ++h) {
|
|
for (int w = 0; w < outputWidth; ++w) {
|
|
int imRowIdx = h * strideHeight + hOffset;
|
|
int imColIdx = w * strideWidth + wOffset;
|
|
if ((imRowIdx - paddingHeight) >= 0 &&
|
|
(imRowIdx - paddingHeight) < inputHeight &&
|
|
(imColIdx - paddingWidth) >= 0 &&
|
|
(imColIdx - paddingWidth) < inputWidth) {
|
|
imRowIdx += c_im * inputHeight - paddingHeight;
|
|
imColIdx -= paddingWidth;
|
|
imData[imRowIdx * inputWidth + imColIdx] +=
|
|
colData[(c * outputHeight + h) * outputWidth + w];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
/*
|
|
* \brief Forward calculation of convolution.
|
|
*/
|
|
template <DeviceType Device>
|
|
class GemmConvFunction : public ConvFunctionBase {
|
|
public:
|
|
void init(const FuncConfig& config) override {
|
|
ConvFunctionBase::init(config);
|
|
}
|
|
|
|
void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
const TensorShape& input = inputs[0].shape();
|
|
const TensorShape& filter = inputs[1].shape();
|
|
const TensorShape& output = outputs[0].shape();
|
|
checkShape(input, filter, output);
|
|
}
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
CHECK_EQ(numInputs_, inputs.size());
|
|
CHECK_EQ(numOutputs_, outputs.size());
|
|
check(inputs, outputs);
|
|
// TODO(hedaoyuan): Need to define some index macros,
|
|
// to avoid useing 0 and 1.
|
|
const TensorShape& input = inputs[0].shape();
|
|
const TensorShape& filter = inputs[1].shape();
|
|
const TensorShape& output = outputs[0].shape();
|
|
|
|
real beta;
|
|
if (outputs[0].getArgType() == ADD_TO) {
|
|
beta = 1.0;
|
|
} else {
|
|
beta = 0.0;
|
|
}
|
|
|
|
size_t batchSize = input[0];
|
|
size_t inputChannels = input[1];
|
|
size_t inputHeight = input[2];
|
|
size_t inputWidth = input[3];
|
|
size_t filterHeight = getFilterHeight(filter);
|
|
size_t filterWidth = getFilterWidth(filter);
|
|
size_t outputChannels = output[1];
|
|
size_t outputHeight = output[2];
|
|
size_t outputWidth = output[3];
|
|
|
|
real* inputData = inputs[0].data<real>();
|
|
real* filterData = inputs[1].data<real>();
|
|
real* outputData = outputs[0].data<real>();
|
|
|
|
size_t size = inputChannels / groups_ * filterHeight * filterWidth *
|
|
outputHeight * outputWidth;
|
|
resizeBuffer<Device>(size);
|
|
real* colData = reinterpret_cast<real*>(memory_->getBuf());
|
|
|
|
Im2ColFunctor<Device, real> im2col;
|
|
GemmFunctor<Device, real> gemm;
|
|
size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth;
|
|
size_t outputOffset =
|
|
(outputChannels / groups_) * outputHeight * outputWidth;
|
|
size_t filterOffset = filter.getElements() / groups_;
|
|
|
|
for (size_t i = 0; i < batchSize; i++) {
|
|
for (size_t g = 0; g < groups_; g++) {
|
|
im2col(inputData + g * inputOffset,
|
|
inputChannels / groups_,
|
|
inputHeight,
|
|
inputWidth,
|
|
filterHeight,
|
|
filterWidth,
|
|
strideH(),
|
|
strideW(),
|
|
paddingH(),
|
|
paddingW(),
|
|
outputHeight,
|
|
outputWidth,
|
|
colData);
|
|
|
|
int M = outputChannels / groups_;
|
|
int N = outputHeight * outputWidth;
|
|
int K = inputChannels / groups_ * filterHeight * filterWidth;
|
|
gemm(CblasNoTrans,
|
|
CblasNoTrans,
|
|
M,
|
|
N,
|
|
K,
|
|
1.0f,
|
|
filterData + g * filterOffset,
|
|
K,
|
|
colData,
|
|
N,
|
|
beta,
|
|
outputData + g * outputOffset,
|
|
N);
|
|
}
|
|
inputData += inputChannels * inputHeight * inputWidth;
|
|
outputData += outputChannels * outputHeight * outputWidth;
|
|
}
|
|
}
|
|
};
|
|
|
|
/*
|
|
* \brief Backward input calculation of convolution.
|
|
*/
|
|
template <DeviceType Device>
|
|
class GemmConvGradInputFunction : public ConvFunctionBase {
|
|
public:
|
|
void init(const FuncConfig& config) override {
|
|
ConvFunctionBase::init(config);
|
|
}
|
|
|
|
void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
const TensorShape& output = inputs[0].shape();
|
|
const TensorShape& filter = inputs[1].shape();
|
|
const TensorShape& input = outputs[0].shape();
|
|
checkShape(input, filter, output);
|
|
}
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
CHECK_EQ(numInputs_, inputs.size());
|
|
CHECK_EQ(numOutputs_, outputs.size());
|
|
check(inputs, outputs);
|
|
// Since the implementation of Col2ImFunctor is ADD_TO,
|
|
// this function only supports ADD_TO mode.
|
|
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
|
|
const TensorShape& output = inputs[0].shape();
|
|
const TensorShape& filter = inputs[1].shape();
|
|
const TensorShape& input = outputs[0].shape();
|
|
|
|
size_t batchSize = input[0];
|
|
size_t inputChannels = input[1];
|
|
size_t inputHeight = input[2];
|
|
size_t inputWidth = input[3];
|
|
size_t filterHeight = getFilterHeight(filter);
|
|
size_t filterWidth = getFilterWidth(filter);
|
|
size_t outputChannels = output[1];
|
|
size_t outputHeight = output[2];
|
|
size_t outputWidth = output[3];
|
|
|
|
real* outputGrad = inputs[0].data<real>();
|
|
real* filterData = inputs[1].data<real>();
|
|
real* inputGrad = outputs[0].data<real>();
|
|
|
|
size_t size = inputChannels / groups_ * filterHeight * filterWidth *
|
|
outputHeight * outputWidth;
|
|
resizeBuffer<Device>(size);
|
|
real* colData = reinterpret_cast<real*>(memory_->getBuf());
|
|
|
|
Col2ImFunctor<Device, real> col2im;
|
|
GemmFunctor<Device, real> gemm;
|
|
size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth;
|
|
size_t outputOffset =
|
|
(outputChannels / groups_) * outputHeight * outputWidth;
|
|
size_t filterOffset = filter.getElements() / groups_;
|
|
|
|
for (size_t i = 0; i < batchSize; i++) {
|
|
for (size_t g = 0; g < groups_; g++) {
|
|
int K = outputChannels / groups_;
|
|
int N = outputHeight * outputWidth;
|
|
int M = inputChannels / groups_ * filterHeight * filterWidth;
|
|
gemm(CblasTrans,
|
|
CblasNoTrans,
|
|
M,
|
|
N,
|
|
K,
|
|
1.0f,
|
|
filterData + g * filterOffset,
|
|
M,
|
|
outputGrad + g * outputOffset,
|
|
N,
|
|
0.0f,
|
|
colData,
|
|
N);
|
|
|
|
col2im(colData,
|
|
inputChannels / groups_,
|
|
inputHeight,
|
|
inputWidth,
|
|
filterHeight,
|
|
filterWidth,
|
|
strideH(),
|
|
strideW(),
|
|
paddingH(),
|
|
paddingW(),
|
|
outputHeight,
|
|
outputWidth,
|
|
inputGrad + g * inputOffset);
|
|
}
|
|
inputGrad += inputChannels * inputHeight * inputWidth;
|
|
outputGrad += outputChannels * outputHeight * outputWidth;
|
|
}
|
|
}
|
|
};
|
|
|
|
/*
|
|
* \brief Backward filter calculation of convolution.
|
|
*/
|
|
template <DeviceType Device>
|
|
class GemmConvGradFilterFunction : public ConvFunctionBase {
|
|
public:
|
|
void init(const FuncConfig& config) override {
|
|
ConvFunctionBase::init(config);
|
|
}
|
|
|
|
void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
const TensorShape& output = inputs[0].shape();
|
|
const TensorShape& input = inputs[1].shape();
|
|
const TensorShape& filter = outputs[0].shape();
|
|
checkShape(input, filter, output);
|
|
}
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
CHECK_EQ(numInputs_, inputs.size());
|
|
CHECK_EQ(numOutputs_, outputs.size());
|
|
check(inputs, outputs);
|
|
const TensorShape& output = inputs[0].shape();
|
|
const TensorShape& input = inputs[1].shape();
|
|
const TensorShape& filter = outputs[0].shape();
|
|
|
|
real beta;
|
|
if (outputs[0].getArgType() == ADD_TO) {
|
|
beta = 1.0;
|
|
} else {
|
|
beta = 0.0;
|
|
}
|
|
|
|
size_t batchSize = input[0];
|
|
size_t inputChannels = input[1];
|
|
size_t inputHeight = input[2];
|
|
size_t inputWidth = input[3];
|
|
size_t filterHeight = getFilterHeight(filter);
|
|
size_t filterWidth = getFilterWidth(filter);
|
|
size_t outputChannels = output[1];
|
|
size_t outputHeight = output[2];
|
|
size_t outputWidth = output[3];
|
|
|
|
real* outputGrad = inputs[0].data<real>();
|
|
real* inputData = inputs[1].data<real>();
|
|
real* filterGrad = outputs[0].data<real>();
|
|
|
|
size_t size = inputChannels / groups_ * filterHeight * filterWidth *
|
|
outputHeight * outputWidth;
|
|
resizeBuffer<Device>(size);
|
|
real* colData = reinterpret_cast<real*>(memory_->getBuf());
|
|
|
|
Im2ColFunctor<Device, real> im2col;
|
|
GemmFunctor<Device, real> gemm;
|
|
size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth;
|
|
size_t outputOffset =
|
|
(outputChannels / groups_) * outputHeight * outputWidth;
|
|
size_t filterOffset = filter.getElements() / groups_;
|
|
for (size_t i = 0; i < batchSize; i++) {
|
|
for (size_t g = 0; g < groups_; g++) {
|
|
im2col(inputData + g * inputOffset,
|
|
inputChannels / groups_,
|
|
inputHeight,
|
|
inputWidth,
|
|
filterHeight,
|
|
filterWidth,
|
|
strideH(),
|
|
strideW(),
|
|
paddingH(),
|
|
paddingW(),
|
|
outputHeight,
|
|
outputWidth,
|
|
colData);
|
|
|
|
int M = outputChannels / groups_;
|
|
int K = outputHeight * outputWidth;
|
|
int N = inputChannels / groups_ * filterHeight * filterWidth;
|
|
gemm(CblasNoTrans,
|
|
CblasTrans,
|
|
M,
|
|
N,
|
|
K,
|
|
1.0f,
|
|
outputGrad + g * outputOffset,
|
|
K,
|
|
colData,
|
|
K,
|
|
i == 0 ? beta : 1.0f,
|
|
filterGrad + g * filterOffset,
|
|
N);
|
|
}
|
|
inputData += inputChannels * inputHeight * inputWidth;
|
|
outputGrad += outputChannels * outputHeight * outputWidth;
|
|
}
|
|
}
|
|
};
|
|
|
|
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction);
|
|
REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction);
|
|
REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction);
|
|
#ifndef PADDLE_ONLY_CPU
|
|
REGISTER_TYPED_FUNC(GemmConv, GPU, GemmConvFunction);
|
|
REGISTER_TYPED_FUNC(GemmConvGradInput, GPU, GemmConvGradInputFunction);
|
|
REGISTER_TYPED_FUNC(GemmConvGradFilter, GPU, GemmConvGradFilterFunction);
|
|
#endif
|
|
|
|
} // namespace paddle
|