You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
148 lines
5.5 KiB
148 lines
5.5 KiB
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/math/maxouting.h"
|
|
#include "paddle/fluid/platform/cuda_primitives.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace math {
|
|
|
|
template <typename T>
|
|
__global__ void KernelMaxOut(const int nthreads, const T* input_data,
|
|
const int channels, const int input_height,
|
|
const int input_width, int groups,
|
|
T* output_data) {
|
|
const int size = input_height * input_width * channels / groups;
|
|
const int feat_len = input_height * input_width;
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int offset = blockDim.x * gridDim.x;
|
|
for (int i = index; i < nthreads; i += offset) {
|
|
int batch_idx = i / size;
|
|
int batch_offset = i % size;
|
|
int channel_idx = batch_offset / feat_len;
|
|
int feat_idx = batch_offset % feat_len;
|
|
int data_idx =
|
|
(batch_idx * size + channel_idx * feat_len) * groups + feat_idx;
|
|
T ele = static_cast<T>(-FLT_MAX);
|
|
for (int g = 0; g < groups; ++g) {
|
|
T x = input_data[data_idx + g * feat_len];
|
|
ele = ele > x ? ele : x;
|
|
}
|
|
output_data[i] = ele;
|
|
}
|
|
}
|
|
template <typename T>
|
|
__global__ void KernelMaxoutGrad(const int nthreads, const T* input_data,
|
|
const T* output_data, const T* output_grad,
|
|
T* input_grad, const int channels,
|
|
const int input_height, const int input_width,
|
|
int groups) {
|
|
const int size = input_height * input_width * channels / groups;
|
|
const int feat_len = input_height * input_width;
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int offset = blockDim.x * gridDim.x;
|
|
for (int i = index; i < nthreads; i += offset) {
|
|
int batch_idx = i / size;
|
|
int batch_offset = i % size;
|
|
int channel_idx = batch_offset / feat_len;
|
|
int feat_idx = batch_offset % feat_len;
|
|
int data_idx =
|
|
(batch_idx * size + channel_idx * feat_len) * groups + feat_idx;
|
|
int max_index = -1;
|
|
bool continue_match = true;
|
|
for (int g = 0; g < groups && continue_match; ++g) {
|
|
if (input_data[data_idx + g * feat_len] == output_data[i]) {
|
|
max_index = data_idx + g * feat_len;
|
|
continue_match = false;
|
|
break;
|
|
}
|
|
}
|
|
if (max_index != -1) {
|
|
input_grad[max_index] += output_grad[index];
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* All tensors are in NCHW format.
|
|
*/
|
|
template <typename T>
|
|
class MaxOutFunctor<platform::CUDADeviceContext, T> {
|
|
public:
|
|
void operator()(const platform::CUDADeviceContext& context,
|
|
const framework::Tensor& input, framework::Tensor* output,
|
|
int groups) {
|
|
const int batch_size = input.dims()[0];
|
|
const int input_channels = input.dims()[1];
|
|
const int input_height = input.dims()[2];
|
|
const int input_width = input.dims()[3];
|
|
const int output_channels = output->dims()[1];
|
|
const int output_height = output->dims()[2];
|
|
const int output_width = output->dims()[3];
|
|
|
|
const T* input_data = input.data<T>();
|
|
T* output_data = output->mutable_data<T>(context.GetPlace());
|
|
int nthreads = output->numel();
|
|
int blocks = (nthreads + 1024 - 1) / 1024;
|
|
dim3 threads(1024, 1);
|
|
dim3 grid(blocks, 1);
|
|
|
|
KernelMaxOut<T><<<grid, threads, 0, context.stream()>>>(
|
|
nthreads, input_data, input_channels, input_height, input_width, groups,
|
|
output_data);
|
|
}
|
|
};
|
|
/*
|
|
* All tensors are in NCHW format.
|
|
*/
|
|
template <typename T>
|
|
class MaxOutGradFunctor<platform::CUDADeviceContext, T> {
|
|
public:
|
|
void operator()(const platform::CUDADeviceContext& context,
|
|
const framework::Tensor& input, framework::Tensor* input_grad,
|
|
const framework::Tensor& output,
|
|
const framework::Tensor& output_grad, int groups) {
|
|
const int batch_size = input.dims()[0];
|
|
const int input_channels = input.dims()[1];
|
|
const int input_height = input.dims()[2];
|
|
const int input_width = input.dims()[3];
|
|
const int output_channels = output.dims()[1];
|
|
const int output_height = output.dims()[2];
|
|
const int output_width = output.dims()[3];
|
|
|
|
const T* input_data = input.data<T>();
|
|
const T* output_data = output.data<T>();
|
|
const T* output_grad_data = output_grad.data<T>();
|
|
T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
|
|
int nthreads = output.numel();
|
|
int blocks = (nthreads + 1024 - 1) / 1024;
|
|
dim3 threads(1024, 1);
|
|
dim3 grid(blocks, 1);
|
|
|
|
KernelMaxoutGrad<T><<<grid, threads, 0, context.stream()>>>(
|
|
nthreads, input_data, output_data, output_grad_data, input_grad_data,
|
|
input_channels, input_height, input_width, groups);
|
|
}
|
|
};
|
|
|
|
template class MaxOutGradFunctor<platform::CUDADeviceContext, float>;
|
|
template class MaxOutGradFunctor<platform::CUDADeviceContext, double>;
|
|
|
|
template class MaxOutFunctor<platform::CUDADeviceContext, float>;
|
|
template class MaxOutFunctor<platform::CUDADeviceContext, double>;
|
|
|
|
} // namespace math
|
|
} // namespace operators
|
|
} // namespace paddle
|