You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
620 lines
21 KiB
620 lines
21 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import ast
|
|
import astor
|
|
import atexit
|
|
import copy
|
|
import gast
|
|
import imp
|
|
import inspect
|
|
import os
|
|
import six
|
|
import tempfile
|
|
|
|
dygraph_class_to_static_api = {
|
|
"CosineDecay": "cosine_decay",
|
|
"ExponentialDecay": "exponential_decay",
|
|
"InverseTimeDecay": "inverse_time_decay",
|
|
"NaturalExpDecay": "natural_exp_decay",
|
|
"NoamDecay": "noam_decay",
|
|
"PiecewiseDecay": "piecewise_decay",
|
|
"PolynomialDecay": "polynomial_decay",
|
|
}
|
|
|
|
|
|
def _is_api_in_module_helper(obj, module_prefix):
|
|
m = inspect.getmodule(obj)
|
|
return m is not None and m.__name__.startswith(module_prefix)
|
|
|
|
|
|
def is_api_in_module(node, module_prefix):
|
|
assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api"
|
|
func_str = astor.to_source(gast.gast_to_ast(node.func))
|
|
try:
|
|
# TODO(liym27):
|
|
# Consider a better to import modules like:
|
|
# source_file = inspect.getfile(dyfunc)
|
|
# import_statements = ImportVisitor(source_file).transform()
|
|
# import_str = "".join(import_statements)
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.layers as layers
|
|
from paddle.fluid.dygraph import to_variable
|
|
import paddle.fluid.dygraph as dygraph
|
|
return eval("_is_api_in_module_helper({}, '{}')".format(func_str,
|
|
module_prefix))
|
|
except NameError:
|
|
return False
|
|
|
|
|
|
def is_dygraph_api(node):
|
|
# Note: A api in module dygraph_to_static is not a real dygraph api.
|
|
if is_api_in_module(node, "paddle.fluid.dygraph.dygraph_to_static"):
|
|
return False
|
|
|
|
return is_api_in_module(node, "paddle.fluid.dygraph")
|
|
|
|
|
|
def is_paddle_api(node):
|
|
return is_api_in_module(node, "paddle.fluid")
|
|
|
|
|
|
# Is numpy_api cannot reuse is_api_in_module because of numpy module problem
|
|
def is_numpy_api(node):
|
|
assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api"
|
|
func_str = astor.to_source(gast.gast_to_ast(node.func))
|
|
try:
|
|
import numpy as np
|
|
module_result = eval("_is_api_in_module_helper({}, '{}')".format(
|
|
func_str, "numpy"))
|
|
# BUG: np.random.uniform doesn't have module and cannot be analyzed
|
|
# TODO: find a better way
|
|
if not module_result:
|
|
return func_str.startswith("numpy.") or func_str.startswith("np.")
|
|
except NameError:
|
|
return False
|
|
|
|
|
|
def is_control_flow_to_transform(node,
|
|
static_analysis_visitor=None,
|
|
var_name_to_type=None):
|
|
"""
|
|
Determines whether the node is a PaddlePaddle control flow statement which needs to
|
|
be transformed into a static graph control flow statement.
|
|
"""
|
|
assert isinstance(node, gast.AST), \
|
|
"The type of input node must be gast.AST, but received %s." % type(node)
|
|
visitor = IsControlFlowVisitor(
|
|
node, static_analysis_visitor, node_var_type_map=var_name_to_type)
|
|
need_to_transform = visitor.transform()
|
|
return need_to_transform
|
|
|
|
|
|
def _delete_keywords_from(node):
|
|
assert isinstance(node, gast.Call)
|
|
func_src = astor.to_source(gast.gast_to_ast(node.func))
|
|
import paddle.fluid as fluid
|
|
full_args = eval("inspect.getargspec({})".format(func_src))
|
|
full_args_name = full_args[0]
|
|
|
|
node.keywords = [k for k in node.keywords if k.arg in full_args_name]
|
|
return
|
|
|
|
|
|
def to_static_api(dygraph_class):
|
|
if dygraph_class in dygraph_class_to_static_api:
|
|
return dygraph_class_to_static_api[dygraph_class]
|
|
else:
|
|
raise NotImplementedError("Paddle dygraph API {} cannot be converted "
|
|
"to static graph at present.".format(
|
|
dygraph_class))
|
|
|
|
|
|
def _add_keywords_to(node, dygraph_api_name):
|
|
assert isinstance(node, gast.Call)
|
|
if dygraph_api_name == "Linear":
|
|
for ast_keyword in node.keywords:
|
|
if ast_keyword.arg == "output_dim":
|
|
ast_keyword.arg = "size"
|
|
|
|
node.keywords.append(
|
|
gast.keyword(
|
|
arg="num_flatten_dims",
|
|
value=gast.Constant(
|
|
value=-1, kind=None)))
|
|
|
|
if dygraph_api_name == "BilinearTensorProduct":
|
|
for ast_keyword in node.keywords:
|
|
if ast_keyword.arg == "output_dim":
|
|
ast_keyword.arg = "size"
|
|
|
|
if dygraph_api_name == "PRelu":
|
|
for ast_keyword in node.keywords:
|
|
if ast_keyword.arg == "input":
|
|
ast_keyword.arg = "x"
|
|
return
|
|
|
|
|
|
def is_to_variable(node):
|
|
assert isinstance(node, gast.Call)
|
|
if is_dygraph_api(node):
|
|
api_name = ast_to_source_code(node.func).strip()
|
|
return api_name.endswith("to_variable")
|
|
return False
|
|
|
|
|
|
def to_static_ast(node, class_node):
|
|
assert isinstance(node, gast.Call)
|
|
assert isinstance(class_node, gast.Call)
|
|
static_api = to_static_api(class_node.func.attr)
|
|
|
|
node.func = gast.Attribute(
|
|
attr=static_api,
|
|
ctx=gast.Load(),
|
|
value=gast.Attribute(
|
|
attr='layers',
|
|
ctx=gast.Load(),
|
|
value=gast.Name(
|
|
ctx=gast.Load(), id='fluid', annotation=None,
|
|
type_comment=None)))
|
|
|
|
update_args_of_func(node, class_node, 'forward')
|
|
|
|
node.args.extend(class_node.args)
|
|
node.keywords.extend(class_node.keywords)
|
|
_add_keywords_to(node, class_node.func.attr)
|
|
_delete_keywords_from(node)
|
|
|
|
gast.fix_missing_locations(node)
|
|
|
|
return node
|
|
|
|
|
|
def to_assign_node(node):
|
|
# Transform dygraph api `fluid.dygraph.to_variable` to static api `fluid.layers.assign`.
|
|
# NOTE:
|
|
# 1. Api `to_variable` supports data type {float16, float32, float64, int16, int32, int64, uint8, uint16},
|
|
# but api `assign` only supports {float32, float64, int32, int64, bool};
|
|
# 2. If the input of api `assign` is numpy.ndarray, its size cannot be greater than 1024 * 1024.
|
|
assert isinstance(node, gast.Call)
|
|
assign_api = gast.parse('fluid.layers.assign').body[0].value
|
|
node.func = assign_api
|
|
|
|
if node.args:
|
|
node.args = [node.args[0]]
|
|
node.keywords = []
|
|
else:
|
|
for idx, kw in enumerate(node.keywords):
|
|
if kw.arg == 'value':
|
|
node.keywords[idx].arg = 'input'
|
|
node.keywords = [node.keywords[idx]]
|
|
node.args = []
|
|
break
|
|
return node
|
|
|
|
|
|
def update_args_of_func(node, dygraph_node, method_name):
|
|
assert isinstance(node, gast.Call)
|
|
if method_name not in ["__init__", "forward"]:
|
|
raise ValueError(
|
|
"The method name of class to update args should be '__init__' or 'forward'"
|
|
)
|
|
|
|
class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
|
|
import paddle.fluid as fluid
|
|
if method_name == "__init__" or eval(
|
|
"issubclass({}, fluid.dygraph.Layer)".format(class_src)):
|
|
full_args = eval("inspect.getargspec({}.{})".format(class_src,
|
|
method_name))
|
|
full_args_name = [
|
|
arg_name for arg_name in full_args[0] if arg_name != "self"
|
|
]
|
|
else:
|
|
full_args_name = []
|
|
added_keywords = []
|
|
for idx, arg in enumerate(node.args):
|
|
added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))
|
|
|
|
node.args = []
|
|
node.keywords = added_keywords + node.keywords
|
|
|
|
|
|
def create_api_shape_node(tensor_shape_node):
|
|
assert isinstance(tensor_shape_node, (gast.Attribute, gast.Subscript))
|
|
|
|
if isinstance(tensor_shape_node, gast.Attribute):
|
|
api_shape_node = gast.Call(
|
|
func=gast.parse('fluid.layers.shape').body[0].value,
|
|
args=[tensor_shape_node.value],
|
|
keywords=[])
|
|
return api_shape_node
|
|
|
|
if isinstance(tensor_shape_node, gast.Subscript):
|
|
result_node = copy.deepcopy(tensor_shape_node)
|
|
result_node.value = create_api_shape_node(result_node.value)
|
|
return result_node
|
|
|
|
|
|
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
|
|
return gast.parse('%s = fluid.layers.fill_constant(%s, "%s", %s)' %
|
|
(name, str(shape), dtype, str(value)))
|
|
|
|
|
|
def get_attribute_full_name(node):
|
|
assert isinstance(
|
|
node,
|
|
gast.Attribute), "Input non-Attribute node to get attribute full name"
|
|
return astor.to_source(gast.gast_to_ast(node)).strip()
|
|
|
|
|
|
def generate_name_node(name_ids, ctx=gast.Load()):
|
|
"""
|
|
Generate list or gast.Tuple of ast.Name for Return statement.
|
|
"""
|
|
if isinstance(name_ids, six.string_types):
|
|
name_ids = [name_ids]
|
|
if not isinstance(name_ids, (list, tuple, set)):
|
|
raise TypeError('name_ids must be list or tuple or set, but received %s'
|
|
% type(type(name_ids)))
|
|
gast_names = [
|
|
gast.Name(
|
|
id=name_id, ctx=ctx, annotation=None, type_comment=None)
|
|
for name_id in name_ids
|
|
]
|
|
if len(gast_names) == 1:
|
|
name_node = gast_names[0]
|
|
else:
|
|
name_node = gast.Tuple(elts=gast_names, ctx=ctx)
|
|
return name_node
|
|
|
|
|
|
def create_funcDef_node(nodes, name, input_args, return_name_ids):
|
|
"""
|
|
Wrapper all statements of nodes into one ast.FunctionDef, which can be
|
|
called by ast.Call.
|
|
"""
|
|
nodes = copy.copy(nodes)
|
|
# add return statement
|
|
if return_name_ids:
|
|
nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
|
|
else:
|
|
nodes.append(gast.Return(value=None))
|
|
func_def_node = gast.FunctionDef(
|
|
name=name,
|
|
args=input_args,
|
|
body=nodes,
|
|
decorator_list=[],
|
|
returns=None,
|
|
type_comment=None)
|
|
return func_def_node
|
|
|
|
|
|
def index_in_list(array_list, item):
|
|
try:
|
|
return array_list.index(item)
|
|
except ValueError:
|
|
# Item not in array_list
|
|
return -1
|
|
|
|
|
|
def create_assign_node(name, node):
|
|
"""
|
|
Creates a `gast.Assign` node by given name_id as target and node as value.
|
|
"""
|
|
targets = generate_name_node(name, ctx=gast.Store())
|
|
assign_node = gast.Assign(targets=[targets], value=node)
|
|
return targets, assign_node
|
|
|
|
|
|
class RenameTransformer(gast.NodeTransformer):
|
|
def __init__(self, node):
|
|
assert isinstance(
|
|
node, gast.AST), "RenameTransformer only accepts gast.AST as input"
|
|
self.root = node
|
|
self.old_name = ""
|
|
self.new_name = ""
|
|
|
|
def rename(self, old_name, new_name):
|
|
self.old_name = old_name
|
|
self.new_name = new_name
|
|
self.visit(self.root)
|
|
|
|
def visit_Name(self, node):
|
|
self.generic_visit(node)
|
|
if node.id == self.old_name:
|
|
node.id = self.new_name
|
|
return node
|
|
|
|
def visit_Attribute(self, node):
|
|
self.generic_visit(node)
|
|
attr_full_name = get_attribute_full_name(node)
|
|
if attr_full_name == self.old_name:
|
|
new_name_node = gast.parse(self.new_name).body[0].value
|
|
return new_name_node
|
|
return node
|
|
|
|
|
|
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
|
|
"""
|
|
Transform modified AST of decorated function into python callable object.
|
|
TODO: If only decorate one of inner function instead of decorating the main
|
|
function, the other inner functions are invisible for the decorated function.
|
|
"""
|
|
source = ast_to_source_code(ast_root)
|
|
if six.PY2:
|
|
source = source.encode('utf-8')
|
|
f = tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False)
|
|
else:
|
|
f = tempfile.NamedTemporaryFile(
|
|
mode='w', suffix='.py', delete=False, encoding='utf-8')
|
|
with f:
|
|
module_name = os.path.basename(f.name[:-3])
|
|
f.write(source)
|
|
|
|
if delete_on_exit:
|
|
atexit.register(lambda: os.remove(f.name))
|
|
module = imp.load_source(module_name, f.name)
|
|
func_name = dyfunc.__name__
|
|
if not hasattr(module, func_name):
|
|
raise ValueError(
|
|
'Function: %s doesn\'t exist in the Module transformed from AST.' %
|
|
func_name)
|
|
callable_func = getattr(module, func_name)
|
|
# After transform dygraph function into callable_func saved in tmp file,
|
|
# it lost the global variables from imported statements or defined in source file.
|
|
# Recovers the necessary variables by `__globals__`.
|
|
recover_globals_attribute(dyfunc, callable_func)
|
|
|
|
return callable_func, f.name
|
|
|
|
|
|
def recover_globals_attribute(src_obj, dst_obj):
|
|
attr_name = '__globals__'
|
|
|
|
src_globals = getattr(src_obj, attr_name, {})
|
|
dst_globals = getattr(dst_obj, attr_name, {})
|
|
|
|
for k, v in src_globals.items():
|
|
# ignore builtin attribute.
|
|
if not (k.startswith('__') and k.endswith('__')):
|
|
dst_globals[k] = v
|
|
|
|
|
|
def ast_to_source_code(ast_node):
|
|
"""
|
|
Transformers ast node into source code.
|
|
"""
|
|
if not isinstance(ast_node, (gast.AST, ast.AST)):
|
|
raise TypeError(
|
|
"Type of ast_root should be gast.AST or ast.AST, but received %s." %
|
|
type(ast_node))
|
|
if isinstance(ast_node, gast.AST):
|
|
ast_node = gast.gast_to_ast(ast_node)
|
|
source_code = astor.to_source(ast_node)
|
|
return source_code
|
|
|
|
|
|
def is_candidate_node(node):
|
|
"""
|
|
Nodes with specified type will be dependent on tensor.
|
|
"""
|
|
is_compare_node = isinstance(node, (gast.Compare, gast.BoolOp, gast.UnaryOp,
|
|
gast.For, gast.If, gast.While))
|
|
# TODO(Aurelius84): `.numpy()` may be an customized function,
|
|
# and should consider a more elegant way to solve this problem.
|
|
has_numpy_attr = ".numpy()" in ast_to_source_code(node)
|
|
return is_compare_node or has_numpy_attr
|
|
|
|
|
|
def compare_with_none(node):
|
|
"""
|
|
Whether the comparator of `gast.Compare` node is `None`.
|
|
"""
|
|
if isinstance(node, gast.Compare):
|
|
for child in [node.left, node.comparators]:
|
|
# node.comparators is a list.
|
|
if isinstance(child, list):
|
|
child = child[0]
|
|
if (isinstance(child, gast.Constant) and child.value is None) or (
|
|
isinstance(child, gast.Name) and child.id == 'None'):
|
|
return True
|
|
return False
|
|
|
|
|
|
class IsControlFlowVisitor(gast.NodeVisitor):
|
|
"""
|
|
Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
|
|
`ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).
|
|
|
|
If returns True,
|
|
gast.If.test must meet at least one of the following requirements:
|
|
1. involves at least one var whose type is Tensor.
|
|
2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
|
|
3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
|
|
gast.While must meet at least one of the requirements 1 to 5:
|
|
4. has `break` statement.
|
|
5. has `continue` statement.
|
|
gast.For must meet at least one of the requirements 4 to 6:
|
|
6. calls `range` function in `for` statement and the argument of range is Tensor.
|
|
TODO: Support non-range case
|
|
|
|
The following examples should not be considered as control_flow_if:
|
|
1. `if Tensor_var` or `if Tensor_var is None`
|
|
2. if Tensor.shape[i] is determined with fixed value (not -1 or None)
|
|
|
|
Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
|
|
or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).
|
|
|
|
TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
|
|
because reshape_op may be called before this statement.
|
|
"""
|
|
|
|
def __init__(self,
|
|
ast_node,
|
|
static_analysis_visitor=None,
|
|
node_var_type_map=None):
|
|
assert isinstance(
|
|
ast_node, gast.AST
|
|
), "Type of input node should be gast.AST, but received %s." % type(
|
|
ast_node)
|
|
self.ast_root = ast_node
|
|
if static_analysis_visitor is None:
|
|
from .static_analysis import StaticAnalysisVisitor
|
|
static_analysis_visitor = StaticAnalysisVisitor(ast_node)
|
|
self.static_analysis_visitor = static_analysis_visitor
|
|
self.node_to_wrapper_map = self.static_analysis_visitor.get_node_to_wrapper_map(
|
|
)
|
|
self.node_var_type_map = node_var_type_map
|
|
|
|
self.is_control_flow_num = 0
|
|
self._compare_node_tenor_set = set()
|
|
|
|
def transform(self):
|
|
node = self.ast_root
|
|
if is_candidate_node(node):
|
|
if isinstance(node, gast.If):
|
|
self._visit_If(node)
|
|
if isinstance(node, gast.For):
|
|
self._visit_For(node)
|
|
elif isinstance(node, gast.While):
|
|
self._visit_While(node)
|
|
else:
|
|
self.visit(node)
|
|
return self.is_control_flow_num > 0
|
|
|
|
def _visit_If(self, node):
|
|
assert isinstance(node, gast.If)
|
|
self.visit(node.test)
|
|
return
|
|
|
|
def _visit_For(self, node):
|
|
assert isinstance(node, gast.For)
|
|
if not isinstance(node.iter, gast.Call):
|
|
return
|
|
if not isinstance(node.iter.func, gast.Name):
|
|
return
|
|
if node.iter.func.id != "range":
|
|
return
|
|
for arg in node.iter.args:
|
|
self.visit(arg)
|
|
|
|
for child_node in gast.walk(node):
|
|
if isinstance(child_node, (gast.Continue, gast.Break)):
|
|
self._visit_break_continue(child_node)
|
|
return
|
|
|
|
def _visit_While(self, node):
|
|
assert isinstance(node, gast.While)
|
|
test = node.test
|
|
self.generic_visit(test)
|
|
for child_node in gast.walk(node):
|
|
if isinstance(child_node, (gast.Continue, gast.Break)):
|
|
self._visit_break_continue(child_node)
|
|
return
|
|
|
|
def _visit_break_continue(self, node):
|
|
assert isinstance(node, (gast.Break, gast.Continue))
|
|
wrapper_node = self.node_to_wrapper_map.get(node)
|
|
if not wrapper_node:
|
|
# Transformed node is not in node_to_wrapper_map
|
|
return
|
|
|
|
while wrapper_node.parent:
|
|
parent_node = wrapper_node.parent.node
|
|
if isinstance(parent_node, (gast.For, gast.While)):
|
|
if parent_node is self.ast_root:
|
|
self.is_control_flow_num += 1
|
|
return
|
|
else:
|
|
return
|
|
|
|
wrapper_node = wrapper_node.parent
|
|
|
|
return
|
|
|
|
def visit_BoolOp(self, node):
|
|
for i, child in enumerate(node.values):
|
|
if is_candidate_node(child):
|
|
self.visit(child)
|
|
return node
|
|
|
|
def visit_Compare(self, node):
|
|
# Ignores child node with `if x` or `if x is None`
|
|
# TODO(Aurelius84): `if tensor` will be supported in dygraph
|
|
# and should be considered as is_control_flow.
|
|
pre_control_flow_num = self.is_control_flow_num
|
|
if not compare_with_none(node):
|
|
self.generic_visit(node)
|
|
for child in gast.walk(node):
|
|
if isinstance(child, gast.Subscript):
|
|
self._visit_Subscript(child)
|
|
if self.is_control_flow_num > pre_control_flow_num:
|
|
self._compare_node_tenor_set.add(node)
|
|
return node
|
|
|
|
def _visit_Subscript(self, node):
|
|
self.generic_visit(node)
|
|
if hasattr(node, 'value') and isinstance(node.value, gast.Call):
|
|
self._visit_Call(node.value)
|
|
return node
|
|
|
|
def _visit_Call(self, node):
|
|
assert isinstance(node, gast.Call)
|
|
if isinstance(node.func, gast.Attribute):
|
|
attr_node = node.func
|
|
if attr_node.attr == 'numpy':
|
|
self.is_control_flow_num += 1
|
|
|
|
def visit_Call(self, node):
|
|
self._visit_Call(node)
|
|
if is_paddle_api(node):
|
|
self.is_control_flow_num += 1
|
|
return node
|
|
|
|
def visit_Name(self, node):
|
|
if self._is_node_with_tensor(node, node.id):
|
|
self.is_control_flow_num += 1
|
|
return node
|
|
|
|
def visit_Constant(self, node):
|
|
if self._is_node_with_tensor(node, node.value):
|
|
self.is_control_flow_num += 1
|
|
return node
|
|
|
|
def _is_node_with_tensor(self, node, name_id):
|
|
from paddle.fluid.dygraph.dygraph_to_static.static_analysis import NodeVarType
|
|
|
|
tensor_types = {NodeVarType.TENSOR, NodeVarType.PADDLE_RETURN_TYPES}
|
|
# Look up the node_var_type_map by name_id.
|
|
if self.node_var_type_map:
|
|
if name_id and isinstance(name_id, six.string_types):
|
|
var_type = self.node_var_type_map.get(name_id, None)
|
|
if var_type and var_type & tensor_types:
|
|
return True
|
|
# if not found, look up the node_to_wrapper_map by node.
|
|
node_to_wrapper_map = self.static_analysis_visitor.get_node_to_wrapper_map(
|
|
)
|
|
wrapper_node = node_to_wrapper_map.get(node, None)
|
|
if wrapper_node is not None:
|
|
if wrapper_node.node_var_type & tensor_types:
|
|
return True
|
|
|
|
return False
|
|
|
|
def get_compare_nodes_with_tensor(self):
|
|
return self._compare_node_tenor_set
|