You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
5.7 KiB
166 lines
5.7 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import compiler, Program, program_guard
|
|
from op_test import OpTest
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
# Correct: General.
|
|
class TestSqueezeOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "squeeze"
|
|
self.init_test_case()
|
|
self.inputs = {"X": np.random.random(self.ori_shape).astype("float64")}
|
|
self.init_attrs()
|
|
self.outputs = {"Out": self.inputs["X"].reshape(self.new_shape), }
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(["X"], "Out")
|
|
|
|
def init_test_case(self):
|
|
self.ori_shape = (1, 3, 1, 40)
|
|
self.axes = (0, 2)
|
|
self.new_shape = (3, 40)
|
|
|
|
def init_attrs(self):
|
|
self.attrs = {"axes": self.axes}
|
|
|
|
|
|
# Correct: There is mins axis.
|
|
class TestSqueezeOp1(TestSqueezeOp):
|
|
def init_test_case(self):
|
|
self.ori_shape = (1, 3, 1, 40)
|
|
self.axes = (0, -2)
|
|
self.new_shape = (3, 40)
|
|
|
|
|
|
# Correct: No axes input.
|
|
class TestSqueezeOp2(TestSqueezeOp):
|
|
def init_test_case(self):
|
|
self.ori_shape = (1, 20, 1, 5)
|
|
self.axes = ()
|
|
self.new_shape = (20, 5)
|
|
|
|
|
|
# Correct: Just part of axes be squeezed.
|
|
class TestSqueezeOp3(TestSqueezeOp):
|
|
def init_test_case(self):
|
|
self.ori_shape = (6, 1, 5, 1, 4, 1)
|
|
self.axes = (1, -1)
|
|
self.new_shape = (6, 5, 1, 4)
|
|
|
|
|
|
# Correct: The demension of axis is not of size 1 remains unchanged.
|
|
class TestSqueezeOp4(TestSqueezeOp):
|
|
def init_test_case(self):
|
|
self.ori_shape = (6, 1, 5, 1, 4, 1)
|
|
self.axes = (1, 2)
|
|
self.new_shape = (6, 5, 1, 4, 1)
|
|
|
|
|
|
class TestSqueezeOpError(unittest.TestCase):
|
|
def test_errors(self):
|
|
paddle.enable_static()
|
|
with program_guard(Program(), Program()):
|
|
# The input type of softmax_op must be Variable.
|
|
x1 = fluid.create_lod_tensor(
|
|
np.array([[-1]]), [[1]], paddle.CPUPlace())
|
|
self.assertRaises(TypeError, paddle.squeeze, x1)
|
|
# The input axes of squeeze must be list.
|
|
x2 = paddle.static.data(name='x2', shape=[4], dtype="int32")
|
|
self.assertRaises(TypeError, paddle.squeeze, x2, axes=0)
|
|
# The input dtype of squeeze not support float16.
|
|
x3 = paddle.static.data(name='x3', shape=[4], dtype="float16")
|
|
self.assertRaises(TypeError, paddle.squeeze, x3, axes=0)
|
|
|
|
|
|
class API_TestSqueeze(unittest.TestCase):
|
|
def test_out(self):
|
|
paddle.enable_static()
|
|
with paddle.static.program_guard(paddle.static.Program(),
|
|
paddle.static.Program()):
|
|
data1 = paddle.static.data(
|
|
'data1', shape=[-1, 1, 10], dtype='float64')
|
|
result_squeeze = paddle.squeeze(data1, axis=[1])
|
|
place = paddle.CPUPlace()
|
|
exe = paddle.static.Executor(place)
|
|
input1 = np.random.random([5, 1, 10]).astype('float64')
|
|
result, = exe.run(feed={"data1": input1},
|
|
fetch_list=[result_squeeze])
|
|
expected_result = np.squeeze(input1, axis=1)
|
|
self.assertTrue(np.allclose(expected_result, result))
|
|
|
|
|
|
class API_TestDygraphSqueeze(unittest.TestCase):
|
|
def test_out(self):
|
|
paddle.disable_static()
|
|
input_1 = np.random.random([5, 1, 10]).astype("int32")
|
|
input = paddle.to_tensor(input_1)
|
|
output = paddle.squeeze(input, axis=[1])
|
|
out_np = output.numpy()
|
|
expected_out = np.squeeze(input_1, axis=1)
|
|
self.assertTrue(np.allclose(expected_out, out_np))
|
|
|
|
def test_out_int8(self):
|
|
paddle.disable_static()
|
|
input_1 = np.random.random([5, 1, 10]).astype("int8")
|
|
input = paddle.to_tensor(input_1)
|
|
output = paddle.squeeze(input, axis=[1])
|
|
out_np = output.numpy()
|
|
expected_out = np.squeeze(input_1, axis=1)
|
|
self.assertTrue(np.allclose(expected_out, out_np))
|
|
|
|
def test_out_uint8(self):
|
|
paddle.disable_static()
|
|
input_1 = np.random.random([5, 1, 10]).astype("uint8")
|
|
input = paddle.to_tensor(input_1)
|
|
output = paddle.squeeze(input, axis=[1])
|
|
out_np = output.numpy()
|
|
expected_out = np.squeeze(input_1, axis=1)
|
|
self.assertTrue(np.allclose(expected_out, out_np))
|
|
|
|
def test_axis_not_list(self):
|
|
paddle.disable_static()
|
|
input_1 = np.random.random([5, 1, 10]).astype("int32")
|
|
input = paddle.to_tensor(input_1)
|
|
output = paddle.squeeze(input, axis=1)
|
|
out_np = output.numpy()
|
|
expected_out = np.squeeze(input_1, axis=1)
|
|
self.assertTrue(np.allclose(expected_out, out_np))
|
|
|
|
def test_dimension_not_1(self):
|
|
paddle.disable_static()
|
|
input_1 = np.random.random([5, 1, 10]).astype("int32")
|
|
input = paddle.to_tensor(input_1)
|
|
output = paddle.squeeze(input, axis=(1, 2))
|
|
out_np = output.numpy()
|
|
expected_out = np.squeeze(input_1, axis=1)
|
|
self.assertTrue(np.allclose(expected_out, out_np))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|