You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							106 lines
						
					
					
						
							3.8 KiB
						
					
					
				
			
		
		
	
	
							106 lines
						
					
					
						
							3.8 KiB
						
					
					
				//   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#pragma once
 | 
						|
#include <memory>
 | 
						|
#include <vector>
 | 
						|
#include "paddle/fluid/framework/fleet/box_wrapper.h"
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
#include "paddle/fluid/framework/tensor.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
template <typename T>
 | 
						|
static void PullBoxSparseFunctor(const framework::ExecutionContext &ctx) {
 | 
						|
  auto inputs = ctx.MultiInput<framework::Tensor>("Ids");
 | 
						|
  auto outputs = ctx.MultiOutput<framework::Tensor>("Out");
 | 
						|
  const auto slot_size = inputs.size();
 | 
						|
  std::vector<const uint64_t *> all_keys(slot_size);
 | 
						|
  // BoxPS only supports float now
 | 
						|
  std::vector<float *> all_values(slot_size);
 | 
						|
  std::vector<int64_t> slot_lengths(slot_size);
 | 
						|
  for (size_t i = 0; i < slot_size; i++) {
 | 
						|
    const auto *slot = inputs[i];
 | 
						|
    const uint64_t *single_slot_keys =
 | 
						|
        reinterpret_cast<const uint64_t *>(slot->data<int64_t>());
 | 
						|
    all_keys[i] = single_slot_keys;
 | 
						|
    slot_lengths[i] = slot->numel();
 | 
						|
    auto *output = outputs[i]->mutable_data<T>(ctx.GetPlace());
 | 
						|
    all_values[i] = output;
 | 
						|
  }
 | 
						|
#ifdef PADDLE_WITH_BOX_PS
 | 
						|
  auto hidden_size = ctx.Attr<int>("size");
 | 
						|
  auto box_ptr = paddle::framework::BoxWrapper::GetInstance();
 | 
						|
  box_ptr->PullSparse(ctx.GetPlace(), all_keys, all_values, slot_lengths,
 | 
						|
                      hidden_size);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
static void PushBoxSparseFunctor(const framework::ExecutionContext &ctx) {
 | 
						|
  auto inputs = ctx.MultiInput<framework::LoDTensor>("Ids");
 | 
						|
  auto d_output =
 | 
						|
      ctx.MultiInput<framework::Tensor>(framework::GradVarName("Out"));
 | 
						|
  const auto slot_size = inputs.size();
 | 
						|
  std::vector<const uint64_t *> all_keys(slot_size);
 | 
						|
  std::vector<const float *> all_grad_values(slot_size);
 | 
						|
  std::vector<int64_t> slot_lengths(slot_size);
 | 
						|
  int batch_size = -1;
 | 
						|
  for (size_t i = 0; i < slot_size; i++) {
 | 
						|
    const auto *slot = inputs[i];
 | 
						|
    const uint64_t *single_slot_keys =
 | 
						|
        reinterpret_cast<const uint64_t *>(slot->data<int64_t>());
 | 
						|
    all_keys[i] = single_slot_keys;
 | 
						|
    slot_lengths[i] = slot->numel();
 | 
						|
    int cur_batch_size =
 | 
						|
        slot->lod().size() ? slot->lod()[0].size() - 1 : slot->dims()[0];
 | 
						|
    if (batch_size == -1) {
 | 
						|
      batch_size = cur_batch_size;
 | 
						|
    } else {
 | 
						|
      PADDLE_ENFORCE_EQ(batch_size, cur_batch_size,
 | 
						|
                        platform::errors::PreconditionNotMet(
 | 
						|
                            "The batch size of all input slots should be same, "
 | 
						|
                            "please cheack"));
 | 
						|
    }
 | 
						|
    const float *grad_value = d_output[i]->data<float>();
 | 
						|
    all_grad_values[i] = grad_value;
 | 
						|
  }
 | 
						|
#ifdef PADDLE_WITH_BOX_PS
 | 
						|
  auto hidden_size = ctx.Attr<int>("size");
 | 
						|
  auto box_ptr = paddle::framework::BoxWrapper::GetInstance();
 | 
						|
  box_ptr->PushSparseGrad(ctx.GetPlace(), all_keys, all_grad_values,
 | 
						|
                          slot_lengths, hidden_size, batch_size);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
using LoDTensor = framework::LoDTensor;
 | 
						|
template <typename T>
 | 
						|
class PullBoxSparseCPUKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext &ctx) const override {
 | 
						|
    PullBoxSparseFunctor<T>(ctx);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class PushBoxSparseCPUKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext &ctx) const override {
 | 
						|
    PushBoxSparseFunctor<T>(ctx);
 | 
						|
  }
 | 
						|
};
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 |