You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
183 lines
6.5 KiB
183 lines
6.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include "io/fs.h"
|
|
#include "paddle/fluid/framework/data_feed_factory.h"
|
|
#include "paddle/fluid/framework/data_set.h"
|
|
#include "paddle/fluid/framework/device_worker_factory.h"
|
|
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
|
|
#include "paddle/fluid/framework/trainer.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
void DistMultiTrainer::Initialize(const TrainerDesc &trainer_desc,
|
|
Dataset *dataset) {
|
|
thread_num_ = trainer_desc.thread_num();
|
|
SetDataset(dataset);
|
|
|
|
ParseDumpConfig(trainer_desc);
|
|
mpi_rank_ = trainer_desc.mpi_rank();
|
|
mpi_size_ = trainer_desc.mpi_size();
|
|
dump_file_num_ = trainer_desc.dump_file_num();
|
|
const std::vector<paddle::framework::DataFeed *> readers =
|
|
dataset->GetReaders();
|
|
|
|
thread_num_ = readers.size();
|
|
workers_.resize(thread_num_);
|
|
for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
|
|
i++) {
|
|
need_merge_var_names_.push_back(
|
|
trainer_desc.downpour_param().stat_var_names(i));
|
|
}
|
|
|
|
for (int i = 0; i < thread_num_; ++i) {
|
|
workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
|
|
trainer_desc.device_worker_name());
|
|
workers_[i]->SetDeviceIndex(i);
|
|
workers_[i]->SetDataFeed(readers[i]);
|
|
workers_[i]->SetNeedDumpField(need_dump_field_);
|
|
workers_[i]->SetNeedDumpParam(need_dump_param_);
|
|
workers_[i]->SetDumpFieldVector(dump_fields_);
|
|
workers_[i]->SetDumpParamVector(dump_param_);
|
|
workers_[i]->InitRandomDumpConfig(trainer_desc);
|
|
workers_[i]->Initialize(trainer_desc);
|
|
}
|
|
|
|
VLOG(3) << "going to initialize pull dense worker";
|
|
pull_dense_worker_ = PullDenseWorker::GetInstance();
|
|
pull_dense_worker_->Initialize(trainer_desc);
|
|
VLOG(3) << "initialize pull dense worker";
|
|
SetDebug(trainer_desc.debug());
|
|
}
|
|
|
|
void DistMultiTrainer::InitDumpEnv() {
|
|
queue_ = paddle::framework::MakeChannel<std::string>();
|
|
for (int i = 0; i < thread_num_; ++i) {
|
|
workers_[i]->SetChannelWriter(queue_.get());
|
|
}
|
|
dump_thread_num_ = 1;
|
|
if (dump_file_num_ > mpi_size_) {
|
|
dump_thread_num_ = dump_file_num_ / mpi_size_;
|
|
if (dump_file_num_ % mpi_size_ > mpi_rank_) {
|
|
dump_thread_num_ += 1;
|
|
}
|
|
}
|
|
for (int i = 0; i < dump_thread_num_; i++) {
|
|
dump_thread_.push_back(
|
|
std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
|
|
}
|
|
}
|
|
|
|
void DistMultiTrainer::InitTrainerEnv(const ProgramDesc &main_program,
|
|
const platform::Place &place) {
|
|
for (int i = 0; i < thread_num_; ++i) {
|
|
workers_[i]->SetPlace(place);
|
|
workers_[i]->SetReaderPlace(place);
|
|
workers_[i]->SetRootScope(root_scope_);
|
|
workers_[i]->CreateDeviceResource(main_program); // Program
|
|
workers_[i]->BindingDataFeedMemory();
|
|
}
|
|
// Scope* -> thread id, it will be used in push_dense op
|
|
for (int i = 0; i < thread_num_; ++i) {
|
|
Scope *thread_scope = workers_[i]->GetThreadScope();
|
|
pull_dense_worker_->SetThreadIdByScope(thread_scope, i);
|
|
}
|
|
}
|
|
|
|
void DistMultiTrainer::InitOtherEnv(const ProgramDesc &main_program) {
|
|
if (need_dump_field_) {
|
|
InitDumpEnv();
|
|
}
|
|
pull_dense_worker_->SetRootScope(root_scope_);
|
|
pull_dense_worker_->Start();
|
|
VLOG(3) << "init other env done.";
|
|
}
|
|
|
|
void DistMultiTrainer::Run() {
|
|
for (int thidx = 0; thidx < thread_num_; ++thidx) {
|
|
if (!debug_) {
|
|
threads_.push_back(
|
|
std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
|
|
} else {
|
|
threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
|
|
workers_[thidx].get()));
|
|
}
|
|
}
|
|
}
|
|
|
|
Scope *DistMultiTrainer::GetWorkerScope(int thread_id) {
|
|
return workers_[thread_id]->GetThreadScope();
|
|
}
|
|
|
|
void DistMultiTrainer::Finalize() {
|
|
for (auto &th : threads_) {
|
|
th.join();
|
|
}
|
|
for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
|
|
Variable *root_var = root_scope_->FindVar(need_merge_var_names_[i]);
|
|
if (root_var == nullptr) {
|
|
continue;
|
|
}
|
|
LoDTensor *root_tensor = root_var->GetMutable<LoDTensor>();
|
|
for (int j = 1; j < thread_num_; j++) {
|
|
Scope *cur_thread_scope = workers_[j]->GetThreadScope();
|
|
Variable *thread_var =
|
|
cur_thread_scope->FindVar(need_merge_var_names_[i]);
|
|
LoDTensor *thread_tensor = thread_var->GetMutable<LoDTensor>();
|
|
if (root_tensor->numel() != thread_tensor->numel()) {
|
|
continue;
|
|
}
|
|
#define MergeCallback(cpp_type, proto_type) \
|
|
do { \
|
|
if (root_tensor->type() == proto_type) { \
|
|
if (thread_tensor->type() != proto_type) { \
|
|
VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
|
|
<< "] " << need_merge_var_names_[i] \
|
|
<< ", root tensor type=" << root_tensor->type() \
|
|
<< ", thread tensor type=" << thread_tensor->type(); \
|
|
exit(-1); \
|
|
} \
|
|
MergeToRootScope<cpp_type>(root_tensor, thread_tensor); \
|
|
} \
|
|
} while (0)
|
|
_ForEachDataType_(MergeCallback);
|
|
}
|
|
}
|
|
|
|
if (need_dump_field_) {
|
|
FinalizeDumpEnv();
|
|
}
|
|
pull_dense_worker_->Stop();
|
|
root_scope_->DropKids();
|
|
|
|
// flush local client push queue
|
|
auto fleet_ptr_ = FleetWrapper::GetInstance();
|
|
fleet_ptr_->ClientFlush();
|
|
}
|
|
|
|
template <typename T>
|
|
void DistMultiTrainer::MergeToRootScope(LoDTensor *root_tensor,
|
|
LoDTensor *tensor) {
|
|
T *root_data = root_tensor->data<T>();
|
|
T *data = tensor->data<T>();
|
|
for (int i = 0; i < tensor->numel(); i++) {
|
|
root_data[i] += data[i];
|
|
}
|
|
}
|
|
} // namespace framework
|
|
} // namespace paddle
|