You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
201 lines
8.5 KiB
201 lines
8.5 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/average_accumulates_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <>
|
|
void GetAccumulators<paddle::platform::CPUDeviceContext>(
|
|
const framework::ExecutionContext& ctx, int64_t* num_updates,
|
|
int64_t* num_accumulates, int64_t* old_num_accumulates) {
|
|
auto* in_old_num_accumulates = ctx.Input<Tensor>("in_old_num_accumulates");
|
|
auto* in_num_accumulates = ctx.Input<Tensor>("in_num_accumulates");
|
|
auto* in_num_updates = ctx.Input<Tensor>("in_num_updates");
|
|
|
|
*old_num_accumulates = in_old_num_accumulates->data<int64_t>()[0];
|
|
*num_accumulates = in_num_accumulates->data<int64_t>()[0];
|
|
*num_updates = in_num_updates->data<int64_t>()[0];
|
|
}
|
|
|
|
template <>
|
|
void SetAccumulators<paddle::platform::CPUDeviceContext>(
|
|
const framework::ExecutionContext& ctx, int64_t num_updates,
|
|
int64_t num_accumulates, int64_t old_num_accumulates) {
|
|
auto* out_old_num_accumulates = ctx.Output<Tensor>("out_old_num_accumulates");
|
|
auto* out_num_accumulates = ctx.Output<Tensor>("out_num_accumulates");
|
|
auto* out_num_updates = ctx.Output<Tensor>("out_num_updates");
|
|
|
|
out_old_num_accumulates->data<int64_t>()[0] = old_num_accumulates;
|
|
out_num_accumulates->data<int64_t>()[0] = num_accumulates;
|
|
out_num_updates->data<int64_t>()[0] = num_updates;
|
|
}
|
|
|
|
class AverageAccumulatesOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("param"), "Input", "param",
|
|
"AverageAccumulates");
|
|
OP_INOUT_CHECK(ctx->HasInput("in_sum_1"), "Input", "in_sum_1",
|
|
"AverageAccumulates");
|
|
OP_INOUT_CHECK(ctx->HasInput("in_sum_2"), "Input", "in_sum_2",
|
|
"AverageAccumulates");
|
|
OP_INOUT_CHECK(ctx->HasInput("in_sum_3"), "Input", "in_sum_3",
|
|
"AverageAccumulates");
|
|
OP_INOUT_CHECK(ctx->HasInput("in_num_accumulates"), "Input",
|
|
"in_num_accumulates", "AverageAccumulates");
|
|
OP_INOUT_CHECK(ctx->HasInput("in_old_num_accumulates"), "Input",
|
|
"in_old_num_accumulates", "AverageAccumulates");
|
|
OP_INOUT_CHECK(ctx->HasInput("in_num_updates"), "Input", "in_num_updates",
|
|
"AverageAccumulates");
|
|
|
|
OP_INOUT_CHECK(ctx->HasOutput("out_sum_1"), "Output", "out_sum_1",
|
|
"AverageAccumulates");
|
|
OP_INOUT_CHECK(ctx->HasOutput("out_sum_2"), "Output", "out_sum_2",
|
|
"AverageAccumulates");
|
|
OP_INOUT_CHECK(ctx->HasOutput("out_sum_3"), "Output", "out_sum_3",
|
|
"AverageAccumulates");
|
|
OP_INOUT_CHECK(ctx->HasOutput("out_num_accumulates"), "Output",
|
|
"out_num_accumulates", "AverageAccumulates");
|
|
OP_INOUT_CHECK(ctx->HasOutput("out_old_num_accumulates"), "Output",
|
|
"out_old_num_accumulates", "AverageAccumulates");
|
|
OP_INOUT_CHECK(ctx->HasOutput("out_num_updates"), "Output",
|
|
"out_num_updates", "AverageAccumulates");
|
|
auto in_dim = ctx->GetInputDim("param");
|
|
|
|
ctx->SetOutputDim("out_sum_1", in_dim);
|
|
ctx->SetOutputDim("out_sum_2", in_dim);
|
|
ctx->SetOutputDim("out_sum_3", in_dim);
|
|
ctx->SetOutputDim("out_num_accumulates", {1});
|
|
ctx->SetOutputDim("out_old_num_accumulates", {1});
|
|
ctx->SetOutputDim("out_num_updates", {1});
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "param"), ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class AverageAccumulatesOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("param", "(Tensor), The parameter to be accumulated.");
|
|
AddInput("in_sum_1",
|
|
"(Tensor), A tensor used to store the parameter "
|
|
"sums with the same shape as input(param).");
|
|
AddInput("in_sum_2",
|
|
"(Tensor), A auxiliary tensor to help "
|
|
"accumulating sums of parameter values with the same shape as "
|
|
"input(param). It is used to avoid loss of precision due to too "
|
|
"many sums.");
|
|
AddInput("in_sum_3",
|
|
"(Tensor), A auxiliary tensor to help "
|
|
"accumulating sums of parameter values with the same shape as "
|
|
"input(param).");
|
|
AddInput("in_num_accumulates",
|
|
"(Tensor<int64_t>), The accumulating times of current window with "
|
|
"shape [1].");
|
|
AddInput(
|
|
"in_old_num_accumulates",
|
|
"(Tensor<int64_t>), The accumulating times of previous window with "
|
|
"shape [1].");
|
|
AddInput("in_num_updates",
|
|
"(Tensor<int64_t>), The total number of batches used by training "
|
|
"before this batch with shape [1].");
|
|
|
|
AddOutput("out_sum_1",
|
|
"(Tensor), A tensor used to store the "
|
|
"parameter sums with the same shape as input(param).");
|
|
AddOutput("out_sum_2",
|
|
"(Tensor), A auxiliary tensor to help "
|
|
"accumulating sums of parameter values with the same shape as "
|
|
"input(param). It is used to avoid loss of precision due to too "
|
|
"many sums.");
|
|
AddOutput("out_sum_3",
|
|
"(Tensor), A auxiliary tensor to help "
|
|
"accumulating sums of parameter values with the same shape as "
|
|
"input(param).");
|
|
AddOutput(
|
|
"out_num_accumulates",
|
|
"(Tensor<int64_t>), The accumulating times of current window with "
|
|
"shape [1].");
|
|
AddOutput(
|
|
"out_old_num_accumulates",
|
|
"(Tensor<int64_t>) The accumulating times of previous window with "
|
|
"shape [1].");
|
|
AddOutput("out_num_updates",
|
|
"(Tensor<int64_t>), The total number of batches used by training "
|
|
"before this batch with shape [1].");
|
|
|
|
AddAttr<float>("average_window",
|
|
"(float, default 0) "
|
|
"The rate of average window size relative to num_updates.")
|
|
.SetDefault(0);
|
|
AddAttr<int64_t>("max_average_window",
|
|
"(int64_t) "
|
|
"Maximum size of average window. It suggests that the "
|
|
"number of mini-batches "
|
|
"in one pass is appropriate value to set.");
|
|
AddAttr<int64_t>("min_average_window",
|
|
"(int64_t, default 10000L) "
|
|
"Minimu size of average window.")
|
|
.SetDefault(10000L);
|
|
|
|
AddComment(R"DOC(
|
|
AverageAccumulates Operator.
|
|
Accumulate the sum of parameter within sliding window. The size of sliding window is
|
|
determined by 'average_window', 'max_average_window' and 'min_average_window'.
|
|
Memory was shared by Input(in_sum_1) and Output(out_sum_1) which acts as an accumulator 'sum_1'.
|
|
'sum_2', 'sum_3', 'num_accumulates', 'old_num_accumulates' and 'num_updates' were the same as 'sum_1'.
|
|
|
|
All the accumulators were inited to zero before training.
|
|
|
|
And for a mini-batch in training, accumulators were computed as below steps:
|
|
num_updates += 1
|
|
num_accumulates += 1
|
|
sum_1 += param
|
|
if num_updates % kMaxNumAccumulates == 0:
|
|
sum_2 += sum_1
|
|
sum_1 = 0
|
|
if num_accumulates >= min_average_window && num_accumulates >= min(max_average_window, num_updates * average_window):
|
|
sum_3 = sum_1 + sum_2
|
|
sum_1 = 0
|
|
sum_2 = 0
|
|
old_num_accumulates = num_accumulates
|
|
num_accumulates = 0
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(
|
|
average_accumulates, ops::AverageAccumulatesOp,
|
|
ops::AverageAccumulatesOpMaker,
|
|
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
|
|
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
average_accumulates,
|
|
ops::AverageAccumulatesKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::AverageAccumulatesKernel<paddle::platform::CPUDeviceContext, double>);
|