You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
195 lines
6.7 KiB
195 lines
6.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/operators/norm_utils.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
using DataLayout = framework::DataLayout;
|
|
|
|
template <typename T>
|
|
using EigenArrayMap =
|
|
Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
|
|
template <typename T>
|
|
using ConstEigenArrayMap =
|
|
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
|
|
template <typename T>
|
|
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
|
|
template <typename T>
|
|
using ConstEigenVectorArrayMap =
|
|
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
inline void ResizeToChannelFirst(const framework::ExecutionContext& context,
|
|
const Tensor* input,
|
|
Tensor* transformed_input) {
|
|
int dim = input->dims().size() - 2;
|
|
if (dim == 3) {
|
|
// input
|
|
transformed_input->Resize(input->dims());
|
|
|
|
auto in_dims_vec = framework::vectorize(input->dims());
|
|
in_dims_vec[1] = input->dims()[4];
|
|
in_dims_vec[2] = input->dims()[1];
|
|
in_dims_vec[3] = input->dims()[2];
|
|
in_dims_vec[4] = input->dims()[3];
|
|
transformed_input->Resize(framework::make_ddim(in_dims_vec));
|
|
transformed_input->mutable_data<T>(context.GetPlace());
|
|
|
|
} else if (dim == 2) {
|
|
// input
|
|
transformed_input->Resize(input->dims());
|
|
|
|
auto in_dims_vec = framework::vectorize(input->dims());
|
|
in_dims_vec[1] = input->dims()[3];
|
|
in_dims_vec[2] = input->dims()[1];
|
|
in_dims_vec[3] = input->dims()[2];
|
|
transformed_input->Resize(framework::make_ddim(in_dims_vec));
|
|
transformed_input->mutable_data<T>(context.GetPlace());
|
|
} else if (dim == 1) {
|
|
transformed_input->Resize(input->dims());
|
|
|
|
auto in_dims_vec = framework::vectorize(input->dims());
|
|
in_dims_vec[1] = input->dims()[2];
|
|
in_dims_vec[2] = input->dims()[1];
|
|
transformed_input->Resize(framework::make_ddim(in_dims_vec));
|
|
transformed_input->mutable_data<T>(context.GetPlace());
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
inline void TransToChannelFirst(const framework::ExecutionContext& context,
|
|
const Tensor* input,
|
|
Tensor* transformed_input) {
|
|
int dim = input->dims().size() - 2;
|
|
if (dim == 3) {
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
std::vector<int> axis{0, 4, 1, 2, 3};
|
|
math::Transpose<DeviceContext, T, 5> trans5;
|
|
trans5(dev_ctx, *input, transformed_input, axis);
|
|
|
|
} else if (dim == 2) {
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
std::vector<int> axis{0, 3, 1, 2};
|
|
math::Transpose<DeviceContext, T, 4> trans4;
|
|
trans4(dev_ctx, *input, transformed_input, axis);
|
|
} else if (dim == 1) {
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
std::vector<int> axis{0, 2, 1};
|
|
math::Transpose<DeviceContext, T, 3> trans3;
|
|
trans3(dev_ctx, *input, transformed_input, axis);
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
inline void TransToChannelLast(const framework::ExecutionContext& context,
|
|
const Tensor* input, Tensor* transformed_input) {
|
|
int dim = input->dims().size() - 2;
|
|
if (dim == 3) {
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
std::vector<int> axis{0, 2, 3, 4, 1};
|
|
math::Transpose<DeviceContext, T, 5> trans5;
|
|
trans5(dev_ctx, *input, transformed_input, axis);
|
|
|
|
} else if (dim == 2) {
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
std::vector<int> axis{0, 2, 3, 1};
|
|
math::Transpose<DeviceContext, T, 4> trans4;
|
|
trans4(dev_ctx, *input, transformed_input, axis);
|
|
} else if (dim == 1) {
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
std::vector<int> axis{0, 2, 1};
|
|
math::Transpose<DeviceContext, T, 3> trans3;
|
|
trans3(dev_ctx, *input, transformed_input, axis);
|
|
}
|
|
}
|
|
|
|
class BatchNormOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override;
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override;
|
|
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string& var_name, const Tensor& tensor,
|
|
const framework::OpKernelType& expected_kernel_type) const override;
|
|
};
|
|
|
|
class BatchNormGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override;
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override;
|
|
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string& var_name, const Tensor& tensor,
|
|
const framework::OpKernelType& expected_kernel_type) const override;
|
|
};
|
|
|
|
class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override;
|
|
};
|
|
|
|
template <typename T>
|
|
class BatchNormGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override;
|
|
};
|
|
|
|
class BatchNormOpInferVarType
|
|
: public framework::PassInDtypeAndVarTypeToOutput {
|
|
protected:
|
|
std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
|
|
const override {
|
|
static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Y"}};
|
|
return m;
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class BatchNormKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override;
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class BatchNormGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override;
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|