You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
6.4 KiB
168 lines
6.4 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/bce_loss_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class BCELossOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BCELoss");
|
|
OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "BCELoss");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "BCELoss");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto label_dims = ctx->GetInputDim("Label");
|
|
PADDLE_ENFORCE_EQ(
|
|
x_dims.size(), label_dims.size(),
|
|
platform::errors::InvalidArgument(
|
|
"Input(X) and Input(Label) shall have the same shape."));
|
|
bool contain_unknown_dim = framework::contain_unknown_dim(x_dims) ||
|
|
framework::contain_unknown_dim(label_dims);
|
|
bool check = ctx->IsRuntime() || !contain_unknown_dim;
|
|
if (check) {
|
|
PADDLE_ENFORCE_EQ(
|
|
x_dims.size(), label_dims.size(),
|
|
platform::errors::InvalidArgument(
|
|
"ShapeError: Input(X) and Input(Label) shall have the same shape "
|
|
"But received: the shape of Input(X) is [%s], the shape of "
|
|
"Input(Label) is [%s].",
|
|
x_dims, label_dims));
|
|
}
|
|
|
|
ctx->ShareDim("X", "Out");
|
|
ctx->ShareLoD("X", "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class BCELossGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BCELossGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "BCELossGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
|
framework::GradVarName("Out"), "BCELossGrad");
|
|
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
|
|
framework::GradVarName("X"), "BCELossGrad");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
bool contain_unknown_dim = framework::contain_unknown_dim(x_dims) ||
|
|
framework::contain_unknown_dim(dout_dims);
|
|
bool check = ctx->IsRuntime() || !contain_unknown_dim;
|
|
if (check) {
|
|
PADDLE_ENFORCE_EQ(x_dims, dout_dims,
|
|
platform::errors::InvalidArgument(
|
|
"ShapeError:The Input(X) and Input(Out@Grad) "
|
|
"should have the same "
|
|
"shape, But received: the shape of Input(X) is "
|
|
"[%s], the shape of "
|
|
"Input(Out@GRAD) is [%s].",
|
|
x_dims, dout_dims));
|
|
}
|
|
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
|
|
ctx->ShareLoD("X", framework::GradVarName("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class BCELossOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(Tensor, default Tensor<float>), the input is a tensor of logits"
|
|
"computed by the previous operator, which is always the result of"
|
|
"a sigmoid operator. Input must between in 0 and 1.");
|
|
AddInput("Label",
|
|
"(Tensor, default Tensor<float>), have same shape with input"
|
|
"label should between in 0 and 1.");
|
|
AddOutput("Out",
|
|
"(Tensor, default Tensor<float>), have same shape with"
|
|
"input");
|
|
AddComment(R"DOC(
|
|
BinaryCrossEntropy operator.
|
|
|
|
This measures the element-wise probability error in classification tasks
|
|
in which each class is independent.
|
|
|
|
The logitstic loss is given as follows:
|
|
$$loss = -Label * \log(X) - (1 - Label) * \log(1 - X)$$
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class BCELossGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("bce_loss_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("Label", this->Input("Label"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
}
|
|
};
|
|
|
|
DECLARE_INPLACE_OP_INFERER(BCELossInplaceInferer, {"X", "Out"});
|
|
DECLARE_INPLACE_OP_INFERER(BCELossGradInplaceInferer,
|
|
{framework::GradVarName("Out"),
|
|
framework::GradVarName("X")});
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(bce_loss, ops::BCELossOp, ops::BCELossOpMaker,
|
|
ops::BCELossGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::BCELossGradOpMaker<paddle::imperative::OpBase>,
|
|
ops::BCELossInplaceInferer);
|
|
REGISTER_OPERATOR(bce_loss_grad, ops::BCELossGradOp,
|
|
ops::BCELossGradInplaceInferer);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
bce_loss, ops::BCELossOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::BCELossOpKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
bce_loss_grad,
|
|
ops::BCELossGradOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::BCELossGradOpKernel<paddle::platform::CPUDeviceContext, double>);
|