You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
195 lines
7.5 KiB
195 lines
7.5 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/bilateral_slice_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
using DataLayout = framework::DataLayout;
|
|
|
|
class BilateralSliceOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BilateralSlice");
|
|
OP_INOUT_CHECK(ctx->HasInput("Grid"), "Input", "Grid", "BilateralSlice");
|
|
OP_INOUT_CHECK(ctx->HasInput("Guide"), "Input", "Guide", "BilateralSlice");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Output", "BilateralSlice");
|
|
|
|
auto dim_x = ctx->GetInputDim("X"); // NCHW format
|
|
PADDLE_ENFORCE_EQ(
|
|
dim_x.size(), 4,
|
|
platform::errors::Unimplemented(
|
|
"Input(X) dimension must be 4, but got dimension = %d .",
|
|
dim_x.size()));
|
|
|
|
auto input_dims = ctx->GetInputDim("X");
|
|
auto grid_dims = ctx->GetInputDim("Grid");
|
|
auto guide_dims = ctx->GetInputDim("Guide");
|
|
bool has_offset = ctx->Attrs().Get<bool>("has_offset");
|
|
int64_t h = guide_dims[1];
|
|
int64_t w = guide_dims[2];
|
|
int64_t bs = grid_dims[0];
|
|
int64_t coeffs_chans = grid_dims[1];
|
|
int64_t input_chans = input_dims[1];
|
|
|
|
int64_t output_chans;
|
|
if (has_offset) {
|
|
PADDLE_ENFORCE_EQ((coeffs_chans % (input_chans + 1)), 0,
|
|
platform::errors::InvalidArgument(
|
|
"Slicing with affine offset, coefficients grid "
|
|
"should have n_out*(n_in+1) channels, but got %d",
|
|
coeffs_chans));
|
|
output_chans = coeffs_chans / (input_chans + 1);
|
|
} else {
|
|
PADDLE_ENFORCE_EQ((coeffs_chans % input_chans), 0,
|
|
platform::errors::InvalidArgument(
|
|
"Slicing without affine offset, coefficients grid "
|
|
"should have n_out*n_in channels, but got %d .",
|
|
coeffs_chans));
|
|
output_chans = coeffs_chans / input_chans;
|
|
}
|
|
|
|
std::vector<int64_t> output_dims;
|
|
output_dims.push_back(bs);
|
|
output_dims.push_back(output_chans);
|
|
output_dims.push_back(h);
|
|
output_dims.push_back(w);
|
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
|
|
}
|
|
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string& var_name, const Tensor& tensor,
|
|
const framework::OpKernelType& expected_kernel_type) const override {
|
|
return framework::OpKernelType(expected_kernel_type.data_type_,
|
|
tensor.place(), tensor.layout());
|
|
}
|
|
};
|
|
|
|
class BilateralSliceOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"The input tensor of bilateral_slice operator, "
|
|
"This is a 4-D tensor with shape of [N, C, H, W]");
|
|
AddInput("Grid",
|
|
"This is a 5-D tensor. "
|
|
"It should be [N, C, D, H, W].");
|
|
AddInput("Guide",
|
|
"This is a 3-D tensor "
|
|
"It should be [N, H, W].");
|
|
AddOutput("Out",
|
|
"The output tensor of bilateral slice operator, "
|
|
"This is a tensor in same rank with Input(X).");
|
|
AddAttr<bool>("has_offset", "an optional bool. Defaults to False. ")
|
|
.SetDefault(false);
|
|
AddComment(R"DOC(
|
|
This operator enhance input X according guide and grid
|
|
For details of bilateral slice, please refer to paper:
|
|
https://groups.csail.mit.edu/graphics/hdrnet/
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class BilateralSliceOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BilateralSliceOpGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput("Grid"), "Input", "Grid",
|
|
"BilateralSliceOpGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput("Guide"), "Input", "Guide",
|
|
"BilateralSliceOpGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input", "Out",
|
|
"BilateralSliceOpGrad");
|
|
|
|
auto dim_x = ctx->GetInputDim("X");
|
|
auto dim_grid = ctx->GetInputDim("Grid");
|
|
auto dim_guide = ctx->GetInputDim("Guide");
|
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
|
|
}
|
|
if (ctx->HasOutput(framework::GradVarName("Grid"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Grid"), dim_grid);
|
|
}
|
|
if (ctx->HasOutput(framework::GradVarName("Guide"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Guide"), dim_guide);
|
|
}
|
|
}
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class BilateralSliceGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType(this->ForwardOpType() + "_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("Grid", this->Input("Grid"));
|
|
op->SetInput("Guide", this->Input("Guide"));
|
|
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetOutput(framework::GradVarName("Grid"), this->InputGrad("Grid"));
|
|
op->SetOutput(framework::GradVarName("Guide"), this->InputGrad("Guide"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class BilateralSliceKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
|
|
platform::errors::Unimplemented(
|
|
"BilateralSlice only supports GPU now."));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(bilateral_slice, ops::BilateralSliceOp,
|
|
ops::BilateralSliceOpMaker,
|
|
ops::BilateralSliceGradMaker<paddle::framework::OpDesc>,
|
|
ops::BilateralSliceGradMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(bilateral_slice_grad, ops::BilateralSliceOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(bilateral_slice, ops::BilateralSliceKernel<float>,
|
|
ops::BilateralSliceKernel<double>);
|