You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
6.4 KiB
154 lines
6.4 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <thrust/device_vector.h>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include "paddle/fluid/memory/memory.h"
|
|
#include "paddle/fluid/operators/cholesky_op.h"
|
|
#include "paddle/fluid/platform/dynload/cusolver.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename T>
|
|
class CholeskyGPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto& dev_ctx =
|
|
context.template device_context<platform::CUDADeviceContext>();
|
|
|
|
const Tensor* x = context.Input<Tensor>("X");
|
|
Tensor* out = context.Output<Tensor>("Out");
|
|
|
|
bool upper = context.Attr<bool>("upper");
|
|
auto& dims = x->dims();
|
|
int batch_count = 1;
|
|
for (int i = 0; i < dims.size() - 2; i++) {
|
|
batch_count *= dims[i];
|
|
}
|
|
int m = dims[dims.size() - 1];
|
|
int tensor_size = batch_count * m * m;
|
|
|
|
const auto* x_data = x->data<T>();
|
|
auto* out_data = out->mutable_data<T>(context.GetPlace());
|
|
|
|
// matrices are assumed to be stored in column-major order in cusolver
|
|
cublasFillMode_t uplo =
|
|
upper ? CUBLAS_FILL_MODE_LOWER : CUBLAS_FILL_MODE_UPPER;
|
|
// portf is inplace, thus copy the triangular part of the input matrices to
|
|
// the output and set the other triangular part to 0 firstly
|
|
platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx,
|
|
tensor_size);
|
|
if (upper) {
|
|
MatrixBandPartFunctor<T> matrix_band_part_functor(
|
|
m, m, /* num_lower_diags */ 0, /* num_upper_diags */ m, x_data,
|
|
out_data);
|
|
for_range(matrix_band_part_functor);
|
|
} else {
|
|
MatrixBandPartFunctor<T> matrix_band_part_functor(
|
|
m, m, /* num_lower_diags */ m, /* num_upper_diags */ 0, x_data,
|
|
out_data);
|
|
for_range(matrix_band_part_functor);
|
|
}
|
|
|
|
// TODO(guosheng): Add callback to check info
|
|
auto info = memory::Alloc(dev_ctx, sizeof(int) * batch_count);
|
|
auto* info_ptr = reinterpret_cast<int*>(info->ptr());
|
|
|
|
#if CUDA_VERSION >= 9020 && !defined(_WIN32)
|
|
if (batch_count > 1) {
|
|
std::vector<T*> output_ptrs;
|
|
for (int i = 0; i < batch_count; i++) {
|
|
output_ptrs.emplace_back(out_data + i * m * m);
|
|
}
|
|
thrust::device_vector<T*> dev_output_ptrs(output_ptrs.begin(),
|
|
output_ptrs.end());
|
|
PotrfBatched(dev_ctx, uplo, m,
|
|
thrust::raw_pointer_cast(dev_output_ptrs.data()), m,
|
|
info_ptr, batch_count);
|
|
// TODO(guosheng): There seems to a bug in cusolver potrfBatched and need
|
|
// to clear the upper triangle of the output. Remove this workaround once
|
|
// the bug is fixed.
|
|
if (!upper) {
|
|
MatrixBandPartFunctor<T> matrix_band_part_functor(
|
|
m, m, /* num_lower_diags */ m, /* num_upper_diags */ 0, out_data,
|
|
out_data);
|
|
for_range(matrix_band_part_functor);
|
|
}
|
|
} else {
|
|
#endif
|
|
for (int i = 0; i < batch_count; i++) {
|
|
Potrf(dev_ctx, uplo, m, out_data + i * m * m, m, info_ptr + i);
|
|
}
|
|
|
|
#if CUDA_VERSION >= 9020 && !defined(_WIN32)
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void Potrf(const platform::CUDADeviceContext& dev_ctx, cublasFillMode_t uplo,
|
|
int n, T* A, int lda, int* info) const;
|
|
|
|
void PotrfBatched(const platform::CUDADeviceContext& dev_ctx,
|
|
cublasFillMode_t uplo, int n, T* Aarray[], int lda,
|
|
int* info_array, int batch_size) const;
|
|
};
|
|
|
|
#define FUNC_WITH_TYPES(m) m(float, S) m(double, D)
|
|
|
|
#define POTRF_INSTANCE(T, C) \
|
|
template <> \
|
|
void CholeskyGPUKernel<T>::Potrf(const platform::CUDADeviceContext& dev_ctx, \
|
|
cublasFillMode_t uplo, int n, T* A, \
|
|
int lda, int* info) const { \
|
|
auto handle = dev_ctx.cusolver_dn_handle(); \
|
|
int workspace_size = 0; \
|
|
PADDLE_ENFORCE_CUDA_SUCCESS( \
|
|
platform::dynload::cusolverDn##C##potrf_bufferSize( \
|
|
handle, uplo, n, A, lda, &workspace_size)); \
|
|
auto workspace = memory::Alloc(dev_ctx, workspace_size); \
|
|
T* workspace_ptr = reinterpret_cast<T*>(workspace->ptr()); \
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDn##C##potrf( \
|
|
handle, uplo, n, A, lda, workspace_ptr, workspace_size, info)); \
|
|
}
|
|
|
|
FUNC_WITH_TYPES(POTRF_INSTANCE);
|
|
|
|
#if CUDA_VERSION >= 9020 && !defined(_WIN32)
|
|
#define POTRF_BATCH_INSTANCE(T, C) \
|
|
template <> \
|
|
void CholeskyGPUKernel<T>::PotrfBatched( \
|
|
const platform::CUDADeviceContext& dev_ctx, cublasFillMode_t uplo, \
|
|
int n, T* Aarray[], int lda, int* info_array, int batch_size) const { \
|
|
auto handle = dev_ctx.cusolver_dn_handle(); \
|
|
PADDLE_ENFORCE_CUDA_SUCCESS( \
|
|
platform::dynload::cusolverDn##C##potrfBatched( \
|
|
handle, uplo, n, Aarray, lda, info_array, batch_size)); \
|
|
}
|
|
|
|
FUNC_WITH_TYPES(POTRF_BATCH_INSTANCE);
|
|
#endif
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_CUDA_KERNEL(cholesky, ops::CholeskyGPUKernel<float>,
|
|
ops::CholeskyGPUKernel<double>);
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
cholesky_grad,
|
|
ops::CholeskyGradKernel<paddle::platform::CUDADeviceContext, float>,
|
|
ops::CholeskyGradKernel<paddle::platform::CUDADeviceContext, double>);
|