You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/controlflow/while_op.cc

493 lines
20 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <vector>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
namespace paddle {
namespace operators {
using StepScopeVar = std::vector<framework::Scope *>;
using LoDTensor = framework::LoDTensor;
namespace { // NOLINT
static std::string GetSkipEagerDeletionVarsDebugString(
const std::vector<std::string> &vars) {
std::string str = "Skip " + std::to_string(vars.size()) +
" var(s) in eager deletion mode: ";
for (auto &var : vars) {
str.append(var);
str.push_back(' ');
}
return str;
}
} // NOLINT
class WhileOp : public framework::OperatorBase {
public:
WhileOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: framework::OperatorBase(type, inputs, outputs, attrs) {}
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)),
platform::errors::NotFound(
"Input(Condition) of WhileOp is not found."));
auto &cond = scope.FindVar(Input(kCondition))->Get<LoDTensor>();
PADDLE_ENFORCE_EQ(
cond.dims(), paddle::framework::make_ddim({1}),
platform::errors::InvalidArgument(
"The shape of Input(Condition) of WhileOp must be 1. But now "
"the Condition's shape is ",
cond.dims().to_str(), ".\n"));
framework::Executor executor(dev_place);
auto *block = Attr<framework::BlockDesc *>(kStepBlock);
auto *program = block->Program();
auto step_scopes =
scope.FindVar(Output(kStepScopes))->GetMutable<StepScopeVar>();
if (step_scopes->size() > 0) {
platform::DeviceContextPool::Instance().Get(dev_place)->Wait();
for (auto &s : *step_scopes) {
if (scope.HasKid(s)) {
scope.DeleteScope(s);
}
}
step_scopes->clear();
}
PADDLE_ENFORCE_EQ(step_scopes->size(), 0,
platform::errors::PreconditionNotMet(
"The Output(StepScope) of WhileOp should be empty."));
bool cond_data = GetCondData(cond);
bool is_test = Attr<bool>("is_test");
auto &skip_vars = Attr<std::vector<std::string>>(kSkipEagerDeletionVars);
VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars);
auto ctx = executor.Prepare(*program, block->ID(), skip_vars);
if (!is_test) {
while (cond_data) {
auto &current_scope = scope.NewScope();
step_scopes->push_back(&current_scope);
executor.RunPreparedContext(ctx.get(), &current_scope, false, true,
true);
cond_data =
GetCondData(scope.FindVar(Input(kCondition))->Get<LoDTensor>());
}
} else {
auto &current_scope = scope.NewScope();
executor.CreateVariables(*program, &current_scope, block->ID());
while (cond_data) {
for (auto &name : current_scope.LocalVarNames()) {
auto *var = current_scope.Var(name);
if (var->IsType<framework::LoDTensor>()) {
// Clear all lod information for all lod_tensors.
auto *t = var->GetMutable<framework::LoDTensor>();
framework::LoD empty_lod;
t->set_lod(empty_lod);
} else if (var->IsType<framework::LoDTensorArray>()) {
// Clear elements of all tensor arrays.
auto *t = var->GetMutable<framework::LoDTensorArray>();
t->clear();
}
}
executor.RunPreparedContext(ctx.get(), &current_scope, false, false,
false);
cond_data =
GetCondData(scope.FindVar(Input(kCondition))->Get<LoDTensor>());
}
scope.DeleteScope(&current_scope);
}
}
};
class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(kX,
"A set of variables, which are required by operators inside the "
"block of While Op.")
.AsDuplicable();
AddInput(
kCondition,
"(Bool) An scalar. When it's False, the While Op will be terminated.")
.AsDuplicable();
AddOutput(kOutputs,
"A set of variables, which will be assigned with values "
"generated by the operators inside the block of While Op.")
.AsDuplicable();
AddOutput(kStepScopes,
"(StepScopeVar) A vector of local scope, which size equals the "
"step number of While Op. The i'th scope storages temporary "
"variables generated in the i'th step.");
AddAttr<framework::BlockDesc *>(kStepBlock,
"The step block inside WhileOp");
AddAttr<bool>("is_test",
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true.")
.SetDefault(false);
AddAttr<std::vector<std::string>>(kSkipEagerDeletionVars,
"Vars that would skip eager deletion."
"Users should not set this manually.")
.SetDefault(std::vector<std::string>());
AddComment(R"DOC(
)DOC");
}
};
class WhileGradOp : public framework::OperatorBase {
public:
WhileGradOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: framework::OperatorBase(type, inputs, outputs, attrs) {}
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
PADDLE_ENFORCE_EQ(
Attr<bool>("is_test"), false,
platform::errors::InvalidArgument(
"WhileGradOp is only callable when is_test is false."));
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(dev_place);
framework::Executor executor(dev_place);
auto *block = Attr<framework::BlockDesc *>(kStepBlock);
auto *program = block->Program();
auto &skip_vars = Attr<std::vector<std::string>>(kSkipEagerDeletionVars);
VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars);
auto ctx = executor.Prepare(*program, block->ID(), skip_vars);
auto *step_scopes =
scope.FindVar(Input(kStepScopes))->GetMutable<StepScopeVar>();
auto outside_og_names = Inputs(framework::GradVarName(kOutputs));
auto inside_og_names =
Attr<std::vector<std::string>>("original_output_grad");
PADDLE_ENFORCE_EQ(outside_og_names.size(), inside_og_names.size(),
platform::errors::InvalidArgument(
"The number of original output gradient names "
"does not match the number of backward input "
"gradient names. The number of Backward input "
"names is %d and the numbers of original output "
"gradient names is %d.",
outside_og_names.size(), inside_og_names.size()));
for (auto cur_scope_iter = step_scopes->rbegin();
cur_scope_iter != step_scopes->rend(); ++cur_scope_iter) {
VLOG(3) << "Start backward at time_step "
<< cur_scope_iter - step_scopes->rbegin();
framework::Scope &cur_scope = **cur_scope_iter;
// Link OG from outside to inside
for (size_t i = 0; i < outside_og_names.size(); ++i) {
auto outside_og_name = outside_og_names[i];
auto inside_og_name = inside_og_names[i];
VLOG(8) << "Linking outside " << outside_og_name << " --> inside "
<< inside_og_name;
if (scope.FindVar(outside_og_name) == nullptr) {
continue;
}
auto &og_outside = *scope.FindVar(outside_og_name);
auto &og_inside = *cur_scope.Var(inside_og_name);
if (og_outside.IsType<framework::LoDTensor>()) {
auto &outside_tensor = og_outside.Get<framework::LoDTensor>();
auto &inside_tensor = *og_inside.GetMutable<framework::LoDTensor>();
inside_tensor.set_lod(outside_tensor.lod());
inside_tensor.ShareDataWith(outside_tensor);
} else if (og_outside.IsType<framework::LoDTensorArray>()) {
auto outside_array =
og_outside.GetMutable<framework::LoDTensorArray>();
auto &inside_array =
*og_inside.GetMutable<framework::LoDTensorArray>();
inside_array.clear();
inside_array.resize(outside_array->size());
VLOG(8) << outside_og_name << " size = " << outside_array->size();
for (size_t j = 0; j < inside_array.size(); ++j) {
if (!outside_array->at(j).IsInitialized()) {
outside_array->at(j).Resize({0});
}
VLOG(8) << j << " " << outside_array->at(j).numel();
if (outside_array->at(j).numel() != 0) {
inside_array[j].set_lod(outside_array->at(j).lod());
inside_array[j].ShareDataWith(outside_array->at(j));
} else {
PADDLE_ENFORCE_EQ(
inside_array[j].numel(), 0,
platform::errors::InvalidArgument(
"The numel of %d-th element of var %s (LoDTensorArray) "
"in while block must be 0, but received its numel is %d.",
j, inside_og_name, inside_array[j].numel()));
}
}
} else {
PADDLE_THROW(platform::errors::Unimplemented(
"Currently only support LoDTensor and LoDTensorArray in "
"WhileGradOp."));
}
}
executor.RunPreparedContext(ctx.get(), *cur_scope_iter, false, true,
true);
// The Outputs(kXGRAD) contains the names of the gradient of parameters
// and inputs.
auto &pg_ig_names = Outputs(kXGRAD);
auto &p_names = Inputs(kX);
PADDLE_ENFORCE_EQ(pg_ig_names.size(), p_names.size(),
platform::errors::PreconditionNotMet(
"The number of names in Outputs(X@GRAD) does not "
"match the number of names in Inputs(X). The "
"number of names in Outputs(X@GRAD) is %d and "
"the number of names in Inputs(X) is %d.",
pg_ig_names.size(), p_names.size()));
for (size_t param_id = 0; param_id < pg_ig_names.size(); ++param_id) {
if (pg_ig_names[param_id] == framework::kEmptyVarName) {
continue; // parameter doesn't have gradient
}
auto inside_grad_name = framework::GradVarName(p_names[param_id]);
// for some grad_op, their input doesn't have gradient,
// for example lookup_table_grad_op, the input(Idx) doesn't have
// gradient.
auto pg_ig_var = cur_scope.FindVar(inside_grad_name);
PADDLE_ENFORCE_NOT_NULL(
pg_ig_var, platform::errors::NotFound("Variable %s is not found.",
inside_grad_name));
if (pg_ig_var->IsType<framework::LoDTensorArray>()) {
auto pg_ig_lod_t_arr =
pg_ig_var->GetMutable<framework::LoDTensorArray>();
bool empty = true;
for (auto &each : *pg_ig_lod_t_arr) {
if (each.numel() != 0) {
empty = false;
break;
}
}
if (empty) {
LOG(WARNING) << pg_ig_names[param_id]
<< " is not found in cur_scope.";
continue;
}
}
// // TODO(tonyyang-svail): Not sure we need the following
// // If does not compute gradient of that variable inside rnn,
// just
// // continue
// if (local_var_names.find(inside_grad_name) ==
// local_var_names.end()) {
// continue;
// }
// zero gradient variable in step 0
if (cur_scope_iter == step_scopes->rbegin()) {
auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
PADDLE_ENFORCE_NOT_NULL(
var, platform::errors::NotFound("Variable %s is not found.",
inside_grad_name));
PADDLE_ENFORCE_EQ(
var->IsType<framework::LoDTensorArray>() ||
var->IsType<LoDTensor>(),
true, platform::errors::InvalidArgument(
"Currently the type of var only can be LoDTensorArray, "
"or LoDTensor, but the received var[%s] is %s.",
inside_grad_name, framework::ToTypeName(var->Type())));
if (var->IsType<LoDTensor>()) {
auto &inside_tensor = var->Get<framework::LoDTensor>();
framework::AttributeMap attrs;
attrs["dtype"] = inside_tensor.type();
attrs["shape"] = framework::vectorize<int>(inside_tensor.dims());
attrs["value"] = 0.0f;
auto var_name = pg_ig_names[param_id];
auto zero_op = framework::OpRegistry::CreateOp(
"fill_constant", framework::VariableNameMap{},
{{"Out", {var_name}}}, attrs);
zero_op->Run(scope, dev_place);
scope.FindVar(var_name)
->GetMutable<framework::LoDTensor>()
->set_lod(inside_tensor.lod());
}
}
auto new_inside_name = cur_scope.Rename(inside_grad_name);
auto sum_op = framework::OpRegistry::CreateOp(
"sum", {{"X", {pg_ig_names[param_id], new_inside_name}}},
{{"Out", {pg_ig_names[param_id]}}},
framework::AttributeMap{{"use_mkldnn", {false}}});
sum_op->Run(cur_scope, dev_place);
cur_scope.Rename(new_inside_name, inside_grad_name);
}
dev_ctx.Wait();
const_cast<framework::Scope &>(scope).DeleteScope(&cur_scope);
}
step_scopes->clear();
}
};
template <typename T>
class WhileGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> while_grad) const override {
while_grad->SetType("while_grad");
while_grad->SetInput(kX, this->Input(kX));
while_grad->SetInput(kOutputs, this->Output(kOutputs));
while_grad->SetInput(kStepScopes, this->Output(kStepScopes));
auto *grad_block = this->grad_block_[0];
auto *fwd_block = grad_block->ForwardBlock();
auto *parent_block = grad_block->ParentBlock();
// Not all of IGs will be generated by inner gradient operators of while op.
// Ignore IGs that is not generated by the inside block.
std::unordered_set<std::string> inner_op_outputs;
for (const auto *op : grad_block->AllOps()) {
for (auto &oname : op->OutputArgumentNames()) {
inner_op_outputs.insert(oname);
}
}
auto igs = this->InputGrad(kX, /*do not drop empty gradient*/ false);
for (auto &each_ig : igs) {
if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) {
VLOG(8) << "Ignore " << each_ig;
each_ig = framework::kEmptyVarName;
}
}
while_grad->SetOutput(framework::GradVarName(kX), igs);
// OG should be re-calculated by step blocks, since many outputs of while op
// do not need to calculate gradients.
std::unordered_set<std::string> block_ins;
block_ins.reserve(this->Input(kX).size() + this->Output(kOutputs).size());
for (auto &p : this->Input(kX)) {
block_ins.insert(p);
}
for (auto &o : this->Output(kOutputs)) {
block_ins.insert(o);
}
std::unordered_set<std::string> output_grads;
for (const auto *op : grad_block->AllOps()) {
for (auto &input_name : op->InputArgumentNames()) {
// If the input of Op has been recorded or is generated by the forward
// block, do not make it as input again.
// The input is located in I/O or other op's outputs or the variable is
// located in grad_block's parents
if (block_ins.find(input_name) != block_ins.end() ||
(fwd_block->FindVarRecursive(input_name) != nullptr ||
parent_block->FindVarRecursive(input_name) != nullptr)) {
continue;
}
output_grads.insert(input_name);
}
for (auto &output_name : op->OutputArgumentNames()) {
block_ins.insert(output_name);
}
}
std::vector<std::string> output_grads_list;
output_grads_list.resize(output_grads.size());
std::copy(output_grads.begin(), output_grads.end(),
output_grads_list.begin());
while_grad->SetInput(framework::GradVarName(kOutputs), output_grads_list);
while_grad->SetAttrMap(this->Attrs());
while_grad->SetBlockAttr(kStepBlock, grad_block);
// record the original output gradient names, since the gradient name of
// while operator could be renamed.
while_grad->SetAttr("original_output_grad", output_grads_list);
while_grad->SetAttr(kSkipEagerDeletionVars, std::vector<std::string>());
}
};
class WhileGradOpVarTypeInference
: public framework::StaticGraphVarTypeInference {
public:
void operator()(framework::InferVarTypeContext *ctx) const override {
auto p_names = Input(ctx, kX);
auto pg_ig_names = Output(ctx, framework::GradVarName(kX));
for (size_t i = 0; i < p_names.size(); ++i) {
if (HasVar(ctx, pg_ig_names[i])) {
VLOG(5) << "Setting " << pg_ig_names[i] << " following " << p_names[i]
<< " type: " << GetType(ctx, p_names[i]);
SetType(ctx, pg_ig_names[i], GetType(ctx, p_names[i]));
SetDataType(ctx, pg_ig_names[i], GetDataType(ctx, p_names[i]));
}
}
}
};
class WhileGradOpShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {
ctx->HasInputs(kX);
ctx->HasOutputs(framework::GradVarName(kX));
ctx->HasInputs(kOutputs);
ctx->HasInputs(framework::GradVarName(kOutputs));
auto pg_ig_names = ctx->Outputs(kXGRAD);
std::vector<framework::InferShapeVarPtr> in_var_ptrs =
ctx->GetInputVarPtrs(kX);
std::vector<framework::InferShapeVarPtr> out_var_ptrs =
ctx->GetOutputVarPtrs(kXGRAD);
PADDLE_ENFORCE_EQ(in_var_ptrs.size(), out_var_ptrs.size(),
platform::errors::InvalidArgument(
"The size of Inputs(X) must be the same as "
"the size of Outputs(X@GRAD)."));
for (size_t i = 0; i < in_var_ptrs.size(); ++i) {
if (pg_ig_names[i] == framework::kEmptyVarName) {
continue;
}
framework::VarDesc *in_var =
BOOST_GET(framework::VarDesc *, in_var_ptrs[i]);
BOOST_GET(framework::VarDesc *, out_var_ptrs[i])
->SetShape(in_var->GetShape());
}
}
};
} // namespace operators
} // namespace paddle
REGISTER_OPERATOR(
while, paddle::operators::WhileOp, paddle::operators::WhileOpMaker,
paddle::operators::WhileGradOpMaker<paddle::framework::OpDesc>);
REGISTER_OPERATOR(while_grad, paddle::operators::WhileGradOp,
paddle::operators::WhileGradOpShapeInference,
paddle::operators::WhileGradOpVarTypeInference);