You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
6.8 KiB
170 lines
6.8 KiB
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/operators/cross_op.h"
|
|
#include <memory>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
using framework::DDim;
|
|
|
|
class CrossOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(X) of CrossOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Y"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(Index) of CrossOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Output(Out) of CrossOp should not be null."));
|
|
|
|
auto x_dim = ctx->GetInputDim("X");
|
|
auto y_dim = ctx->GetInputDim("Y");
|
|
auto dim = ctx->Attrs().Get<int>("dim");
|
|
|
|
bool dims_match = CheckDims(x_dim, y_dim);
|
|
PADDLE_ENFORCE_EQ(dims_match, true,
|
|
platform::errors::InvalidArgument(
|
|
"The 'shape' of Input(X) should be equal to "
|
|
"the 'shape' of Input(Y). But received "
|
|
"Input(X).dimensions = [%s], "
|
|
"Input(Y).dimensions = [%s]",
|
|
x_dim, y_dim));
|
|
|
|
if (dim != kDefaultDim) {
|
|
PADDLE_ENFORCE_EQ(
|
|
dim < x_dim.size() && dim >= (0 - x_dim.size()), true,
|
|
platform::errors::OutOfRange(
|
|
"Attr(dim) is out of range, It's expected "
|
|
"to be in range of [-%d, %d]. But received Attr(dim) = %d.",
|
|
x_dim.size(), x_dim.size() - 1, dim));
|
|
if (dim < 0) {
|
|
dim += x_dim.size();
|
|
}
|
|
PADDLE_ENFORCE_EQ(x_dim[dim] == 3 && y_dim[dim] == 3, true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(X/Y).dims()[dim] should be equal to 3."
|
|
"But received Input(X/Y).dims()[dim] = %d.",
|
|
x_dim[dim]));
|
|
}
|
|
|
|
ctx->SetOutputDim("Out", x_dim);
|
|
auto type = ctx->GetInputsVarType("X")[0];
|
|
if (type == framework::proto::VarType::LOD_TENSOR) {
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
|
|
return framework::OpKernelType(data_type, ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class CrossGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("X"), true,
|
|
platform::errors::InvalidArgument("Input(X) should be not null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Y"), true,
|
|
platform::errors::InvalidArgument("Input(Y) should be not null."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(Out@GRAD) should be not null."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
|
|
platform::errors::InvalidArgument(
|
|
"Output(X@GRAD) should be not null."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("Y")), true,
|
|
platform::errors::InvalidArgument(
|
|
"Output(Y@GRAD) should be not null."));
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
ctx->SetOutputDim(framework::GradVarName("Y"), ctx->GetInputDim("Y"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class CrossOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor) the input tensor.");
|
|
AddInput("Y", "(Tensor) the second input tensor.");
|
|
AddOutput("Out", "(Tensor), the output tensor.");
|
|
AddAttr<int>("dim", "the dimension to take the cross-product in.")
|
|
.SetDefault(kDefaultDim);
|
|
AddComment(R"DOC(
|
|
Returns the cross product of vectors in dimension dim of
|
|
input and other. Input and other must have the same size,
|
|
and the size of their dim dimension should be 3.
|
|
If dim is not given, it defaults to the first dimension
|
|
found with the size 3.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class CrossGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("cross_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("Y", this->Input("Y"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(cross, ops::CrossOp, ops::CrossOpMaker,
|
|
ops::CrossGradMaker<paddle::framework::OpDesc>,
|
|
ops::CrossGradMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(cross_grad, ops::CrossGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
cross, ops::CrossKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::CrossKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::CrossKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::CrossKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
cross_grad, ops::CrossGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::CrossGradKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::CrossGradKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::CrossGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
|