You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
5.6 KiB
154 lines
5.6 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <algorithm>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/tensor.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
struct RangeInitFunctor {
|
|
int start;
|
|
int delta;
|
|
int* out;
|
|
HOSTDEVICE void operator()(size_t i) { out[i] = start + i * delta; }
|
|
};
|
|
|
|
template <typename T>
|
|
inline HOSTDEVICE T RoIArea(const T* box, bool normalized) {
|
|
if (box[2] < box[0] || box[3] < box[1]) {
|
|
// If coordinate values are is invalid
|
|
// (e.g. xmax < xmin or ymax < ymin), return 0.
|
|
return static_cast<T>(0.);
|
|
} else {
|
|
const T w = box[2] - box[0];
|
|
const T h = box[3] - box[1];
|
|
if (normalized) {
|
|
return w * h;
|
|
} else {
|
|
// If coordinate values are not within range [0, 1].
|
|
return (w + 1) * (h + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* transform that computes target bounding-box regression deltas
|
|
* given proposal boxes and ground-truth boxes.
|
|
*/
|
|
template <typename T>
|
|
inline void BoxToDelta(const int box_num, const framework::Tensor& ex_boxes,
|
|
const framework::Tensor& gt_boxes, const float* weights,
|
|
const bool normalized, framework::Tensor* box_delta) {
|
|
auto ex_boxes_et = framework::EigenTensor<T, 2>::From(ex_boxes);
|
|
auto gt_boxes_et = framework::EigenTensor<T, 2>::From(gt_boxes);
|
|
auto trg = framework::EigenTensor<T, 2>::From(*box_delta);
|
|
T ex_w, ex_h, ex_ctr_x, ex_ctr_y, gt_w, gt_h, gt_ctr_x, gt_ctr_y;
|
|
for (int64_t i = 0; i < box_num; ++i) {
|
|
ex_w = ex_boxes_et(i, 2) - ex_boxes_et(i, 0) + (normalized == false);
|
|
ex_h = ex_boxes_et(i, 3) - ex_boxes_et(i, 1) + (normalized == false);
|
|
ex_ctr_x = ex_boxes_et(i, 0) + 0.5 * ex_w;
|
|
ex_ctr_y = ex_boxes_et(i, 1) + 0.5 * ex_h;
|
|
|
|
gt_w = gt_boxes_et(i, 2) - gt_boxes_et(i, 0) + (normalized == false);
|
|
gt_h = gt_boxes_et(i, 3) - gt_boxes_et(i, 1) + (normalized == false);
|
|
gt_ctr_x = gt_boxes_et(i, 0) + 0.5 * gt_w;
|
|
gt_ctr_y = gt_boxes_et(i, 1) + 0.5 * gt_h;
|
|
|
|
trg(i, 0) = (gt_ctr_x - ex_ctr_x) / ex_w;
|
|
trg(i, 1) = (gt_ctr_y - ex_ctr_y) / ex_h;
|
|
trg(i, 2) = std::log(gt_w / ex_w);
|
|
trg(i, 3) = std::log(gt_h / ex_h);
|
|
|
|
if (weights) {
|
|
trg(i, 0) = trg(i, 0) / weights[0];
|
|
trg(i, 1) = trg(i, 1) / weights[1];
|
|
trg(i, 2) = trg(i, 2) / weights[2];
|
|
trg(i, 3) = trg(i, 3) / weights[3];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void Gather(const T* in, const int in_stride, const int* index, const int num,
|
|
T* out) {
|
|
const int stride_bytes = in_stride * sizeof(T);
|
|
for (int i = 0; i < num; ++i) {
|
|
int id = index[i];
|
|
memcpy(out + i * in_stride, in + id * in_stride, stride_bytes);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void BboxOverlaps(const framework::Tensor& r_boxes,
|
|
const framework::Tensor& c_boxes,
|
|
framework::Tensor* overlaps) {
|
|
auto r_boxes_et = framework::EigenTensor<T, 2>::From(r_boxes);
|
|
auto c_boxes_et = framework::EigenTensor<T, 2>::From(c_boxes);
|
|
auto overlaps_et = framework::EigenTensor<T, 2>::From(*overlaps);
|
|
int r_num = r_boxes.dims()[0];
|
|
int c_num = c_boxes.dims()[0];
|
|
auto zero = static_cast<T>(0.0);
|
|
T r_box_area, c_box_area, x_min, y_min, x_max, y_max, inter_w, inter_h,
|
|
inter_area;
|
|
for (int i = 0; i < r_num; ++i) {
|
|
r_box_area = (r_boxes_et(i, 2) - r_boxes_et(i, 0) + 1) *
|
|
(r_boxes_et(i, 3) - r_boxes_et(i, 1) + 1);
|
|
for (int j = 0; j < c_num; ++j) {
|
|
c_box_area = (c_boxes_et(j, 2) - c_boxes_et(j, 0) + 1) *
|
|
(c_boxes_et(j, 3) - c_boxes_et(j, 1) + 1);
|
|
x_min = std::max(r_boxes_et(i, 0), c_boxes_et(j, 0));
|
|
y_min = std::max(r_boxes_et(i, 1), c_boxes_et(j, 1));
|
|
x_max = std::min(r_boxes_et(i, 2), c_boxes_et(j, 2));
|
|
y_max = std::min(r_boxes_et(i, 3), c_boxes_et(j, 3));
|
|
inter_w = std::max(x_max - x_min + 1, zero);
|
|
inter_h = std::max(y_max - y_min + 1, zero);
|
|
inter_area = inter_w * inter_h;
|
|
overlaps_et(i, j) =
|
|
(inter_area == 0.) ? 0 : inter_area /
|
|
(r_box_area + c_box_area - inter_area);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
void ClipTiledBoxes(const platform::DeviceContext& ctx,
|
|
const framework::Tensor& im_info,
|
|
const framework::Tensor& input_boxes,
|
|
framework::Tensor* out) {
|
|
T* out_data = out->mutable_data<T>(ctx.GetPlace());
|
|
const T* im_info_data = im_info.data<T>();
|
|
const T* input_boxes_data = input_boxes.data<T>();
|
|
T zero(0);
|
|
T im_w = round(im_info_data[1] / im_info_data[2]);
|
|
T im_h = round(im_info_data[0] / im_info_data[2]);
|
|
for (int64_t i = 0; i < input_boxes.numel(); ++i) {
|
|
if (i % 4 == 0) {
|
|
out_data[i] = std::max(std::min(input_boxes_data[i], im_w - 1), zero);
|
|
} else if (i % 4 == 1) {
|
|
out_data[i] = std::max(std::min(input_boxes_data[i], im_h - 1), zero);
|
|
} else if (i % 4 == 2) {
|
|
out_data[i] = std::max(std::min(input_boxes_data[i], im_w - 1), zero);
|
|
} else {
|
|
out_data[i] = std::max(std::min(input_boxes_data[i], im_h - 1), zero);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|