You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/detection/box_coder_op.cc

240 lines
10 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/box_coder_op.h"
#include <vector>
namespace paddle {
namespace operators {
class BoxCoderOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("PriorBox"), true,
platform::errors::NotFound(
"Input(PriorBox) of BoxCoder operator is not found."));
PADDLE_ENFORCE_EQ(
ctx->HasInput("TargetBox"), true,
platform::errors::NotFound(
"Input(TargetBox) of BoxCoder operator is not found."));
PADDLE_ENFORCE_EQ(
ctx->HasOutput("OutputBox"), true,
platform::errors::NotFound(
"Output(OutputBox) of BoxCoder operator is not found."));
auto prior_box_dims = ctx->GetInputDim("PriorBox");
auto target_box_dims = ctx->GetInputDim("TargetBox");
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(prior_box_dims.size(), 2,
platform::errors::InvalidArgument(
"The rank of Input PriorBox in BoxCoder operator "
"must be 2. But received rank = %d",
prior_box_dims.size()));
PADDLE_ENFORCE_EQ(prior_box_dims[1], 4,
platform::errors::InvalidArgument(
"The second dimension of PriorBox in BoxCoder "
"operator must be 4. But received dimension = %d",
prior_box_dims[1]));
if (ctx->HasInput("PriorBoxVar")) {
auto prior_box_var_dims = ctx->GetInputDim("PriorBoxVar");
PADDLE_ENFORCE_EQ(
prior_box_var_dims.size(), 2,
platform::errors::InvalidArgument(
"The rank of Input(PriorBoxVar) in BoxCoder operator"
" should be 2. But received rank = %d",
prior_box_var_dims.size()));
PADDLE_ENFORCE_EQ(
prior_box_dims, prior_box_var_dims,
platform::errors::InvalidArgument(
"The dimension of Input(PriorBoxVar) should be equal to"
"the dimension of Input(PriorBox) in BoxCoder operator "
"when the rank is 2."));
}
}
auto code_type = GetBoxCodeType(ctx->Attrs().Get<std::string>("code_type"));
int axis = ctx->Attrs().Get<int>("axis");
if (code_type == BoxCodeType::kEncodeCenterSize) {
PADDLE_ENFORCE_EQ(target_box_dims.size(), 2,
platform::errors::InvalidArgument(
"The rank of Input TargetBox in BoxCoder operator "
"must be 2. But received rank is %d",
target_box_dims.size()));
PADDLE_ENFORCE_EQ(target_box_dims[1], 4,
platform::errors::InvalidArgument(
"The second dimension of TargetBox in BoxCoder "
"operator is 4. But received dimension is %d",
target_box_dims[1]));
ctx->SetOutputDim(
"OutputBox",
framework::make_ddim({target_box_dims[0], prior_box_dims[0], 4}));
} else if (code_type == BoxCodeType::kDecodeCenterSize) {
PADDLE_ENFORCE_EQ(target_box_dims.size(), 3,
platform::errors::InvalidArgument(
"The rank of Input TargetBox in BoxCoder "
"operator must be 3. But received rank is %d",
target_box_dims.size()));
PADDLE_ENFORCE_EQ(axis == 0 || axis == 1, true,
platform::errors::InvalidArgument(
"axis in BoxCoder operator must be 0 or 1."
"But received axis = %d",
axis));
if (ctx->IsRuntime()) {
if (axis == 0) {
PADDLE_ENFORCE_EQ(
target_box_dims[1], prior_box_dims[0],
platform::errors::InvalidArgument(
"When axis is 0, The second "
"dimension of TargetBox in BoxCoder "
"should be equal to the first dimension of PriorBox."));
} else if (axis == 1) {
PADDLE_ENFORCE_EQ(
target_box_dims[0], prior_box_dims[0],
platform::errors::InvalidArgument(
"When axis is 1, The first "
"dimension of TargetBox in BoxCoder "
"should be equal to the first dimension of PriorBox."));
}
PADDLE_ENFORCE_EQ(target_box_dims[2], prior_box_dims[1],
platform::errors::InvalidArgument(
"The third dimension of TargetBox"
" in BoxCoder should be equal to the "
"second dimension of PriorBox."));
}
ctx->ShareDim("TargetBox", /*->*/ "OutputBox");
}
if (code_type == BoxCodeType::kDecodeCenterSize && axis == 1) {
ctx->ShareLoD("PriorBox", /*->*/ "OutputBox");
} else {
ctx->ShareLoD("TargetBox", /*->*/ "OutputBox");
}
}
};
class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(
"PriorBox",
"(Tensor, default Tensor<float>) "
"Box list PriorBox is a 2-D Tensor with shape [M, 4] holds M boxes, "
"each box is represented as [xmin, ymin, xmax, ymax], "
"[xmin, ymin] is the left top coordinate of the anchor box, "
"if the input is image feature map, they are close to the origin "
"of the coordinate system. [xmax, ymax] is the right bottom "
"coordinate of the anchor box.");
AddInput("PriorBoxVar",
"(Tensor, default Tensor<float>, optional) "
"PriorBoxVar is a 2-D Tensor with shape [M, 4] holds M group "
"of variance. PriorBoxVar will set all elements to 1 by "
"default.")
.AsDispensable();
AddInput(
"TargetBox",
"(LoDTensor or Tensor) This input can be a 2-D LoDTensor with shape "
"[N, 4] when code_type is 'encode_center_size'. This input also can "
"be a 3-D Tensor with shape [N, M, 4] when code_type is "
"'decode_center_size'. [N, 4], each box is represented as "
"[xmin, ymin, xmax, ymax], [xmin, ymin] is the left top coordinate "
"of the box if the input is image feature map, they are close to "
"the origin of the coordinate system. [xmax, ymax] is the right "
"bottom coordinate of the box. This tensor can contain LoD "
"information to represent a batch of inputs. One instance of this "
"batch can contain different numbers of entities.");
AddAttr<std::string>("code_type",
"(string, default encode_center_size) "
"the code type used with the target box")
.SetDefault("encode_center_size")
.InEnum({"encode_center_size", "decode_center_size"});
AddAttr<bool>("box_normalized",
"(bool, default true) "
"whether treat the priorbox as a normalized box")
.SetDefault(true);
AddAttr<int>("axis",
"(int, default 0)"
"which axis in PriorBox to broadcast for box decode,"
"for example, if axis is 0 and TargetBox has shape"
"[N, M, 4] and PriorBox has shape [M, 4], then PriorBox "
"will broadcast to [N, M, 4] for decoding. It is only valid"
"when code type is decode_center_size")
.SetDefault(0)
.InEnum({0, 1});
AddAttr<std::vector<float>>(
"variance",
"(vector<float>, default {}),"
"variance of prior box with shape [4]. PriorBoxVar and variance can"
"not be provided at the same time.")
.SetDefault(std::vector<float>{});
AddOutput("OutputBox",
"(LoDTensor or Tensor) "
"When code_type is 'encode_center_size', the output tensor of "
"box_coder_op with shape [N, M, 4] representing the result of N "
"target boxes encoded with M Prior boxes and variances. When "
"code_type is 'decode_center_size', N represents the batch size "
"and M represents the number of decoded boxes.");
AddComment(R"DOC(
Bounding Box Coder.
Encode/Decode the target bounding box with the priorbox information.
The Encoding schema described below:
ox = (tx - px) / pw / pxv
oy = (ty - py) / ph / pyv
ow = log(abs(tw / pw)) / pwv
oh = log(abs(th / ph)) / phv
The Decoding schema described below:
ox = (pw * pxv * tx * + px) - tw / 2
oy = (ph * pyv * ty * + py) - th / 2
ow = exp(pwv * tw) * pw + tw / 2
oh = exp(phv * th) * ph + th / 2
where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, width
and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote the
priorbox's (anchor) center coordinates, width and height. `pxv`, `pyv`, `pwv`,
`phv` denote the variance of the priorbox and `ox`, `oy`, `ow`, `oh` denote the
encoded/decoded coordinates, width and height.
During Box Decoding, two modes for broadcast are supported. Say target box has
shape [N, M, 4], and the shape of prior box can be [N, 4] or [M, 4]. Then prior
box will broadcast to target box along the assigned axis.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(
box_coder, ops::BoxCoderOp, ops::BoxCoderOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(
box_coder, ops::BoxCoderKernel<paddle::platform::CPUDeviceContext, float>,
ops::BoxCoderKernel<paddle::platform::CPUDeviceContext, double>);