You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
149 lines
5.7 KiB
149 lines
5.7 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/gather.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
const int kBoxDim = 4;
|
|
|
|
template <typename T>
|
|
static inline T BBoxArea(const T* box, bool normalized) {
|
|
if (box[2] < box[0] || box[3] < box[1]) {
|
|
// If coordinate values are is invalid
|
|
// (e.g. xmax < xmin or ymax < ymin), return 0.
|
|
return static_cast<T>(0.);
|
|
} else {
|
|
const T w = box[2] - box[0];
|
|
const T h = box[3] - box[1];
|
|
if (normalized) {
|
|
return w * h;
|
|
} else {
|
|
// If coordinate values are not within range [0, 1].
|
|
return (w + 1) * (h + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class DistributeFpnProposalsOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* fpn_rois = context.Input<paddle::framework::LoDTensor>("FpnRois");
|
|
|
|
auto multi_fpn_rois =
|
|
context.MultiOutput<paddle::framework::LoDTensor>("MultiFpnRois");
|
|
|
|
auto* restore_index =
|
|
context.Output<paddle::framework::Tensor>("RestoreIndex");
|
|
|
|
const int min_level = context.Attr<int>("min_level");
|
|
const int max_level = context.Attr<int>("max_level");
|
|
const int refer_level = context.Attr<int>("refer_level");
|
|
const int refer_scale = context.Attr<int>("refer_scale");
|
|
const int num_level = max_level - min_level + 1;
|
|
|
|
// check that the fpn_rois is not empty
|
|
PADDLE_ENFORCE_EQ(
|
|
fpn_rois->lod().size(), 1UL,
|
|
platform::errors::InvalidArgument("DistributeFpnProposalsOp needs LoD "
|
|
"with one level."));
|
|
|
|
auto fpn_rois_lod = fpn_rois->lod().back();
|
|
int fpn_rois_num = fpn_rois_lod[fpn_rois_lod.size() - 1];
|
|
std::vector<int> target_level;
|
|
// std::vector<int> target_level(fpn_rois_num, -1);
|
|
// record the number of rois in each level
|
|
std::vector<int> num_rois_level(num_level, 0);
|
|
std::vector<int> num_rois_level_integral(num_level + 1, 0);
|
|
for (size_t i = 0; i < fpn_rois_lod.size() - 1; ++i) {
|
|
Tensor fpn_rois_slice =
|
|
fpn_rois->Slice(fpn_rois_lod[i], fpn_rois_lod[i + 1]);
|
|
const T* rois_data = fpn_rois_slice.data<T>();
|
|
for (int j = 0; j < fpn_rois_slice.dims()[0]; ++j) {
|
|
// get the target level of current rois
|
|
T roi_scale = std::sqrt(BBoxArea(rois_data, false));
|
|
int tgt_lvl = std::floor(std::log2(roi_scale / refer_scale + (T)1e-6) +
|
|
refer_level);
|
|
tgt_lvl = std::min(max_level, std::max(tgt_lvl, min_level));
|
|
target_level.push_back(tgt_lvl);
|
|
num_rois_level[tgt_lvl - min_level]++;
|
|
rois_data += kBoxDim;
|
|
}
|
|
}
|
|
// define the output rois
|
|
// pointer which point to each level fpn rois
|
|
std::vector<T*> multi_fpn_rois_data(num_level);
|
|
// lod0 which will record the offset information of each level rois
|
|
std::vector<std::vector<size_t>> multi_fpn_rois_lod0;
|
|
for (int i = 0; i < num_level; ++i) {
|
|
// allocate memory for each level rois
|
|
multi_fpn_rois[i]->mutable_data<T>({num_rois_level[i], kBoxDim},
|
|
context.GetPlace());
|
|
multi_fpn_rois_data[i] = multi_fpn_rois[i]->data<T>();
|
|
std::vector<size_t> lod0(1, 0);
|
|
multi_fpn_rois_lod0.push_back(lod0);
|
|
// statistic start point for each level rois
|
|
num_rois_level_integral[i + 1] =
|
|
num_rois_level_integral[i] + num_rois_level[i];
|
|
}
|
|
restore_index->mutable_data<int>({fpn_rois_num, 1}, context.GetPlace());
|
|
int* restore_index_data = restore_index->data<int>();
|
|
std::vector<int> restore_index_inter(fpn_rois_num, -1);
|
|
// distribute the rois into different fpn level by target level
|
|
for (size_t i = 0; i < fpn_rois_lod.size() - 1; ++i) {
|
|
Tensor fpn_rois_slice =
|
|
fpn_rois->Slice(fpn_rois_lod[i], fpn_rois_lod[i + 1]);
|
|
const T* rois_data = fpn_rois_slice.data<T>();
|
|
size_t cur_offset = fpn_rois_lod[i];
|
|
// std::vector<size_t > lod_offset[num_level];
|
|
for (int j = 0; j < num_level; j++) {
|
|
multi_fpn_rois_lod0[j].push_back(multi_fpn_rois_lod0[j][i]);
|
|
}
|
|
for (int j = 0; j < fpn_rois_slice.dims()[0]; ++j) {
|
|
int lvl = target_level[cur_offset + j];
|
|
memcpy(multi_fpn_rois_data[lvl - min_level], rois_data,
|
|
kBoxDim * sizeof(T));
|
|
multi_fpn_rois_data[lvl - min_level] += kBoxDim;
|
|
int index_in_shuffle = num_rois_level_integral[lvl - min_level] +
|
|
multi_fpn_rois_lod0[lvl - min_level][i + 1];
|
|
restore_index_inter[index_in_shuffle] = cur_offset + j;
|
|
multi_fpn_rois_lod0[lvl - min_level][i + 1]++;
|
|
rois_data += kBoxDim;
|
|
}
|
|
}
|
|
for (int i = 0; i < fpn_rois_num; ++i) {
|
|
restore_index_data[restore_index_inter[i]] = i;
|
|
}
|
|
// merge lod information into LoDTensor
|
|
for (int i = 0; i < num_level; ++i) {
|
|
framework::LoD lod;
|
|
lod.emplace_back(multi_fpn_rois_lod0[i]);
|
|
multi_fpn_rois[i]->set_lod(lod);
|
|
}
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|