You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
262 lines
9.5 KiB
262 lines
9.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <stdint.h>
|
|
#include <fstream>
|
|
#include <numeric>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/data_type.h"
|
|
#include "paddle/fluid/framework/data_type_transform.h"
|
|
#include "paddle/fluid/framework/framework.pb.h"
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/selected_rows.h"
|
|
#include "paddle/fluid/framework/variable.h"
|
|
#include "paddle/fluid/framework/version.h"
|
|
#include "paddle/fluid/operators/distributed/distributed.h"
|
|
#include "paddle/fluid/operators/distributed/parameter_recv.h"
|
|
#include "paddle/fluid/operators/distributed/rpc_common.h"
|
|
#include "paddle/fluid/string/string_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
class RecvSaveOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::proto::VarType::Type(ctx.Attr<int>("dtype")),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class RecvSaveOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddComment(R"DOC(
|
|
Recv Save operator
|
|
|
|
This operator will serialize and write LoDTensor variable to file on disk.
|
|
)DOC");
|
|
AddAttr<int>("dtype",
|
|
"(int, default 5 (FP32)) "
|
|
"Output data type")
|
|
.SetDefault(framework::proto::VarType::FP32);
|
|
|
|
AddAttr<bool>("overwrite",
|
|
"(boolean, default true)"
|
|
"Overwrite the output file if exist")
|
|
.SetDefault(true);
|
|
|
|
AddAttr<std::string>("file_path",
|
|
"(string)"
|
|
"The \"file_path\" where the variable will be saved.")
|
|
.AddCustomChecker(
|
|
[](const std::string &path) { return !path.empty(); });
|
|
|
|
AddAttr<std::vector<int64_t>>("shape",
|
|
"(vector<int64_t>) The shape of the output")
|
|
.SetDefault({});
|
|
|
|
AddAttr<std::vector<std::string>>(
|
|
"slice_varnames",
|
|
"(string vector, default {}) "
|
|
"sometimes we need to put received var in another name "
|
|
"for example: we need var named 'moment_1@127.0.0.1:1001', "
|
|
"and it real name on parameter server is 'moment_1'. ")
|
|
.SetDefault({});
|
|
|
|
AddAttr<std::vector<std::string>>(
|
|
"remote_varnames",
|
|
"(string vector, default {}) "
|
|
"sometimes we need to put received var in another name "
|
|
"for example: we need var named 'moment_1@127.0.0.1:1001', "
|
|
"and it real name on parameter server is 'moment_1'. ")
|
|
.SetDefault({});
|
|
|
|
AddAttr<std::vector<std::string>>("slice_shapes",
|
|
"(vector<int>) "
|
|
"the length of each output along the "
|
|
"specified axis.")
|
|
.SetDefault({});
|
|
|
|
AddAttr<std::vector<std::string>>("endpoints",
|
|
"(string vector, default 127.0.0.1:6164)"
|
|
"Server endpoints in the order of input "
|
|
"variables for mapping")
|
|
.SetDefault({});
|
|
|
|
AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class RecvSaveOpKernel : public framework::OpKernel<T> {
|
|
private:
|
|
void SerializeVersionToStream(std::ostream &os) const {
|
|
{ // the 1st field, uint32_t version for LoDTensor
|
|
os.write(reinterpret_cast<const char *>(&framework::kCurTensorVersion),
|
|
sizeof(framework::kCurTensorVersion));
|
|
}
|
|
// the 2st field, LoD information
|
|
// in this scene, skip LoD information.
|
|
uint64_t size = 0;
|
|
os.write(reinterpret_cast<const char *>(&size), sizeof(size));
|
|
}
|
|
|
|
void SerializeTensorHeaderToStream(
|
|
std::ostream &os, const framework::proto::VarType::Type &type,
|
|
const framework::DDim &dims) const {
|
|
{ // the 1st field, uint32_t version
|
|
constexpr uint32_t version = 0;
|
|
os.write(reinterpret_cast<const char *>(&version), sizeof(version));
|
|
}
|
|
{ // the 2nd field, tensor description
|
|
// int32_t size
|
|
// void* protobuf message
|
|
framework::proto::VarType::TensorDesc desc;
|
|
desc.set_data_type(type);
|
|
auto tensor_dims = framework::vectorize(dims);
|
|
auto *pb_dims = desc.mutable_dims();
|
|
pb_dims->Resize(static_cast<int>(tensor_dims.size()), 0);
|
|
std::copy(tensor_dims.begin(), tensor_dims.end(), pb_dims->begin());
|
|
int32_t size = desc.ByteSize();
|
|
os.write(reinterpret_cast<const char *>(&size), sizeof(size));
|
|
auto out = desc.SerializeAsString();
|
|
os.write(out.data(), size);
|
|
}
|
|
}
|
|
|
|
void SerializeTensorAppendToStream(std::ostream &os,
|
|
const framework::Tensor &tensor) const {
|
|
uint64_t size = tensor.numel() * framework::SizeOfType(tensor.type());
|
|
auto *data_ptr = tensor.data<void>();
|
|
|
|
PADDLE_ENFORCE_LT(size, std::numeric_limits<std::streamsize>::max(),
|
|
platform::errors::ResourceExhausted(
|
|
"tensor size %d overflow when writing tensor", size));
|
|
os.write(static_cast<const char *>(data_ptr),
|
|
static_cast<std::streamsize>(size));
|
|
}
|
|
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
auto place = ctx.GetPlace();
|
|
|
|
auto filename = ctx.Attr<std::string>("file_path");
|
|
auto overwrite = ctx.Attr<bool>("overwrite");
|
|
|
|
if (FileExists(filename) && !overwrite) {
|
|
PADDLE_THROW(platform::errors::AlreadyExists(
|
|
"%s is existed, cannot save to it when overwrite=false", filename));
|
|
}
|
|
|
|
MkDirRecursively(DirName(filename).c_str());
|
|
|
|
auto origin_shape = ctx.Attr<std::vector<int64_t>>("shape");
|
|
auto slice_shapes = ctx.Attr<std::vector<std::string>>("slice_shapes");
|
|
auto slice_varnames = ctx.Attr<std::vector<std::string>>("slice_varnames");
|
|
auto remote_varnames =
|
|
ctx.Attr<std::vector<std::string>>("remote_varnames");
|
|
auto endpoints = ctx.Attr<std::vector<std::string>>("endpoints");
|
|
|
|
PADDLE_ENFORCE_EQ(slice_shapes.size(), slice_varnames.size(),
|
|
platform::errors::InvalidArgument(
|
|
"Expected attr len(slice_shapes) must be equal to "
|
|
"len(slice_varnames)"));
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
slice_shapes.size(), endpoints.size(),
|
|
platform::errors::InvalidArgument(
|
|
"Expected attr len(slice_shapes) must be equal to len(endpoints)"));
|
|
|
|
auto data_type =
|
|
static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype"));
|
|
|
|
// it to save an output stream.
|
|
std::ofstream fout(filename, std::ios::binary);
|
|
PADDLE_ENFORCE_EQ(
|
|
static_cast<bool>(fout), true,
|
|
platform::errors::NotFound("Cannot open %s to write", filename));
|
|
|
|
SerializeVersionToStream(fout);
|
|
SerializeTensorHeaderToStream(fout, data_type,
|
|
framework::make_ddim(origin_shape));
|
|
|
|
framework::Scope &local_scope = ctx.scope().NewScope();
|
|
|
|
auto trainer_id = ctx.Attr<int>("trainer_id");
|
|
|
|
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
|
|
auto &device_ctx = *pool.Get(place);
|
|
|
|
distributed::RPCClient *rpc_client =
|
|
distributed::RPCClient::GetInstance<RPCCLIENT_T>(trainer_id);
|
|
|
|
for (size_t i = 0; i < slice_varnames.size(); i++) {
|
|
auto &varname = slice_varnames[i];
|
|
auto *var = local_scope.Var(varname);
|
|
auto *tensor = var->GetMutable<framework::LoDTensor>();
|
|
|
|
auto slice_string =
|
|
string::split_string<std::string>(slice_shapes[i], ",");
|
|
std::vector<int64_t> slice_shape;
|
|
|
|
for (auto &dim : slice_string) {
|
|
slice_shape.push_back(static_cast<int64_t>(std::stoull(dim)));
|
|
}
|
|
|
|
tensor->Resize(framework::make_ddim(slice_shape));
|
|
|
|
distributed::VarHandlePtr ret;
|
|
|
|
ret = rpc_client->AsyncGetVarNoBarrier(
|
|
endpoints[i], device_ctx, local_scope, remote_varnames[i], varname);
|
|
|
|
PADDLE_ENFORCE_NE(
|
|
ret->Wait(), 0U,
|
|
platform::errors::ExecutionTimeout(
|
|
"rpc error when communication with %s", endpoints[i]));
|
|
|
|
auto &c_tensor = var->Get<framework::LoDTensor>();
|
|
|
|
SerializeTensorAppendToStream(fout, c_tensor);
|
|
local_scope.EraseVars({varname});
|
|
}
|
|
|
|
fout.close();
|
|
ctx.scope().DeleteScope(&local_scope);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(recv_save, ops::RecvSaveOp, ops::RecvSaveOpProtoMaker);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
recv_save, ops::RecvSaveOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::RecvSaveOpKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::RecvSaveOpKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::RecvSaveOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
|