You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
151 lines
5.8 KiB
151 lines
5.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename T>
|
|
struct SameDimsElemwiseDiv<
|
|
platform::CPUDeviceContext, T,
|
|
typename std::enable_if<std::is_floating_point<T>::value>::type> {
|
|
void operator()(const framework::ExecutionContext &ctx,
|
|
const framework::Tensor *x, const framework::Tensor *y,
|
|
framework::Tensor *z) {
|
|
auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
|
|
blas.VDIV(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
|
|
}
|
|
};
|
|
|
|
// use default div function for int32/int64 type because of divison zero
|
|
// checking.
|
|
template <typename T>
|
|
struct SameDimsElemwiseDiv<
|
|
platform::CPUDeviceContext, T,
|
|
typename std::enable_if<!std::is_floating_point<T>::value>::type> {
|
|
void operator()(const framework::ExecutionContext &ctx,
|
|
const framework::Tensor *x, const framework::Tensor *y,
|
|
framework::Tensor *z) {
|
|
default_elementwise_div<platform::CPUDeviceContext, T>(ctx, x, y, z);
|
|
}
|
|
};
|
|
|
|
class ElementwiseDivOpMaker : public ElementwiseOpMaker {
|
|
protected:
|
|
std::string GetName() const override { return "Div"; }
|
|
std::string GetEquation() const override { return "Out = X / Y"; }
|
|
|
|
void AddInputX() override {
|
|
AddInput("X",
|
|
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
|
|
"should be int32, int64, float32, float64.");
|
|
}
|
|
|
|
void AddInputY() override {
|
|
AddInput("Y",
|
|
"(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
|
|
"should be int32, int64, float32, float64.");
|
|
}
|
|
|
|
std::string GetOpFuntionality() const override {
|
|
return "Divide two tensors element-wise";
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ElementwiseDivGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("elementwise_div_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("Y", this->Input("Y"));
|
|
op->SetInput("Out", this->Output("Out"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ElementwiseDivDoubleGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("elementwise_div_grad_grad");
|
|
op->SetInput("Y", this->Input("Y"));
|
|
op->SetInput("Out", this->Input("Out"));
|
|
op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
|
|
op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
|
|
op->SetInput("DX", this->Output(framework::GradVarName("X")));
|
|
|
|
op->SetAttrMap(this->Attrs());
|
|
|
|
op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
|
|
op->SetOutput("DOut", this->InputGrad("Out"));
|
|
op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(elementwise_div, ops::ElementwiseOp,
|
|
ops::ElementwiseDivOpMaker, ops::ElementwiseOpInferVarType,
|
|
ops::ElementwiseDivGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::ElementwiseDivGradOpMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(
|
|
elementwise_div_grad, ops::ElementwiseOpGrad,
|
|
ops::ElementwiseDivDoubleGradMaker<paddle::framework::OpDesc>,
|
|
ops::ElementwiseDivDoubleGradMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(elementwise_div_grad_grad, ops::ElementwiseDivOpDoubleGrad,
|
|
ops::ElementwiseDoubleGradOpInplaceInferer);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
elementwise_div,
|
|
ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::ElementwiseDivKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
elementwise_div_grad,
|
|
ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::ElementwiseDivGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
elementwise_div_grad_grad,
|
|
ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
|
|
float>,
|
|
ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
|
|
double>,
|
|
ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
|
|
int>,
|
|
ops::ElementwiseDivDoubleGradKernel<paddle::platform::CPUDeviceContext,
|
|
int64_t>);
|