You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
226 lines
8.7 KiB
226 lines
8.7 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/grid_sampler_op.h"
|
|
#include <memory>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#ifdef PADDLE_WITH_CUDA
|
|
#include "paddle/fluid/platform/cudnn_helper.h"
|
|
#endif
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
class GridSampleOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "GridSampler");
|
|
OP_INOUT_CHECK(ctx->HasInput("Grid"), "Input", "Grid", "GridSampler");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output", "GridSampler");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto grid_dims = ctx->GetInputDim("Grid");
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 4,
|
|
platform::errors::InvalidArgument(
|
|
"Input(X) of GridSampleOp should be 4-D Tensor, but "
|
|
"received X dimension size(%d)",
|
|
x_dims.size()));
|
|
PADDLE_ENFORCE_EQ(grid_dims.size(), 4,
|
|
platform::errors::InvalidArgument(
|
|
"Input(Grid) of GridSampleOp should be 4-D Tensor, "
|
|
"but received X dimension size(%d)",
|
|
grid_dims.size()));
|
|
if (ctx->IsRuntime() || grid_dims[3] > 0) {
|
|
PADDLE_ENFORCE_EQ(
|
|
grid_dims[3], 2,
|
|
platform::errors::InvalidArgument(
|
|
"Input(Grid) dimension[3] should be 2, but received %d",
|
|
grid_dims[3]));
|
|
}
|
|
if (ctx->IsRuntime()) {
|
|
PADDLE_ENFORCE_EQ(
|
|
grid_dims[0], x_dims[0],
|
|
platform::errors::InvalidArgument(
|
|
"Input(X) and Input(Grid) dimension[0] should be equal, but "
|
|
"received X dimension[0](%d) != Grid dimension[0](%d)",
|
|
x_dims[0], grid_dims[0]));
|
|
PADDLE_ENFORCE_EQ(
|
|
grid_dims[1], x_dims[2],
|
|
platform::errors::InvalidArgument(
|
|
"Input(X) dims[2] and Input(Grid) dims[1] should be equal, but "
|
|
"received X dimension[2](%d) != Grid dimension[1](%d)",
|
|
x_dims[2], grid_dims[1]));
|
|
PADDLE_ENFORCE_EQ(
|
|
grid_dims[2], x_dims[3],
|
|
platform::errors::InvalidArgument(
|
|
"Input(X) dims[3] and Input(Grid) dims[2] should be equal, but "
|
|
"received X dimension[3](%d) != Grid dimension[2](%d)",
|
|
x_dims[3], grid_dims[2]));
|
|
}
|
|
|
|
ctx->SetOutputDim("Output", x_dims);
|
|
ctx->ShareLoD("X", "Output");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
framework::LibraryType library_{framework::LibraryType::kPlain};
|
|
#ifdef PADDLE_WITH_CUDA
|
|
if (platform::CanCUDNNBeUsed(ctx)) {
|
|
library_ = framework::LibraryType::kCUDNN;
|
|
}
|
|
#endif
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
|
|
framework::DataLayout::kAnyLayout, library_);
|
|
}
|
|
};
|
|
|
|
class GridSampleOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(Tensor) The input data of GridSampleOp, "
|
|
"This is a 4-D tensor with shape of [N, C, H, W]");
|
|
AddInput(
|
|
"Grid",
|
|
"(Tensor) The input grid of GridSampleOp generated by AffineGridOp, "
|
|
"This is a 4-D tensor with shape of [N, H, W, 2] is the concatenation "
|
|
"of x and y coordinates with shape [N, H, W] in last dimension");
|
|
AddOutput("Output", "(Tensor) Output tensor with shape [N, C, H, W]");
|
|
AddAttr<bool>(
|
|
"use_cudnn",
|
|
"(bool, default true) Only used in cudnn kernel, need install cudnn")
|
|
.SetDefault(true);
|
|
|
|
AddComment(R"DOC(
|
|
This operation samples input X by using bilinear interpolation based on
|
|
flow field grid, which is usually generated by affine_grid. The grid of
|
|
shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
|
|
with shape [N, H, W] each, where grid_x is indexing the 4th dimension
|
|
(in width dimension) of input data x and grid_y is indexing the 3rd
|
|
dimension (in height dimension), finally results is the bilinear
|
|
interpolation value of 4 nearest corner points.
|
|
|
|
Step 1:
|
|
Get (x, y) grid coordinates and scale to [0, H-1/W-1].
|
|
|
|
grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
|
|
grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
|
|
|
|
Step 2:
|
|
Indices input data X with grid (x, y) in each [H, W] area, and bilinear
|
|
interpolate point value by 4 nearest points.
|
|
|
|
wn ------- y_n ------- en
|
|
| | |
|
|
| d_n |
|
|
| | |
|
|
x_w --d_w-- grid--d_e-- x_e
|
|
| | |
|
|
| d_s |
|
|
| | |
|
|
ws ------- y_s ------- wn
|
|
|
|
x_w = floor(x) // west side x coord
|
|
x_e = x_w + 1 // east side x coord
|
|
y_n = floor(y) // north side y coord
|
|
y_s = y_s + 1 // south side y coord
|
|
|
|
d_w = grid_x - x_w // distance to west side
|
|
d_e = x_e - grid_x // distance to east side
|
|
d_n = grid_y - y_n // distance to north side
|
|
d_s = y_s - grid_y // distance to south side
|
|
|
|
wn = X[:, :, y_n, x_w] // north-west point value
|
|
en = X[:, :, y_n, x_e] // north-east point value
|
|
ws = X[:, :, y_s, x_w] // south-east point value
|
|
es = X[:, :, y_s, x_w] // north-east point value
|
|
|
|
output = wn * d_e * d_s + en * d_w * d_s
|
|
+ ws * d_e * d_n + es * d_w * d_n
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class GridSampleOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
auto input_dims = ctx->GetInputDim("X");
|
|
auto grid_dims = ctx->GetInputDim("Grid");
|
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("X"), input_dims);
|
|
}
|
|
if (ctx->HasOutput(framework::GradVarName("Grid"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Grid"), grid_dims);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
framework::LibraryType library_{framework::LibraryType::kPlain};
|
|
#ifdef PADDLE_WITH_CUDA
|
|
if (platform::CanCUDNNBeUsed(ctx)) {
|
|
library_ = framework::LibraryType::kCUDNN;
|
|
}
|
|
#endif
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
|
|
framework::DataLayout::kAnyLayout, library_);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class GridSampleGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("grid_sampler_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("Grid", this->Input("Grid"));
|
|
op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
|
|
|
|
op->SetAttrMap(this->Attrs());
|
|
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetOutput(framework::GradVarName("Grid"), this->InputGrad("Grid"));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(grid_sampler, ops::GridSampleOp, ops::GridSampleOpMaker,
|
|
ops::GridSampleGradMaker<paddle::framework::OpDesc>,
|
|
ops::GridSampleGradMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(grid_sampler_grad, ops::GridSampleOpGrad);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
grid_sampler,
|
|
ops::GridSampleOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::GridSampleOpKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
grid_sampler_grad,
|
|
ops::GridSampleGradOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::GridSampleGradOpKernel<paddle::platform::CPUDeviceContext, double>);
|