You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
373 lines
14 KiB
373 lines
14 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "cub/cub.cuh"
|
|
#include "paddle/fluid/operators/group_norm_op.h"
|
|
#include "paddle/fluid/platform/cuda_device_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using DataLayout = framework::DataLayout;
|
|
enum GroupNormKernelFlags { kHasScale = 1, kHasBias = 2 };
|
|
|
|
#define CHECK_CASE(i, flags, kernel_name, ...) \
|
|
if (i == flags) { \
|
|
kernel_name<T, i><<<grid, threads, 0, dev_ctx.stream()>>>(__VA_ARGS__); \
|
|
}
|
|
|
|
// 0 for no scale, no bias
|
|
// 1 for has scale, no bias
|
|
// 2 for no scale, has bias
|
|
// 3 for has scale, has bias
|
|
#define UNROLL_ALL_CASES(flags, kernel_name, ...) \
|
|
CHECK_CASE(0, flags, kernel_name, __VA_ARGS__) \
|
|
CHECK_CASE(1, flags, kernel_name, __VA_ARGS__) \
|
|
CHECK_CASE(2, flags, kernel_name, __VA_ARGS__) \
|
|
CHECK_CASE(3, flags, kernel_name, __VA_ARGS__)
|
|
|
|
template <typename T>
|
|
__device__ __inline__ void CudaAtomicAddWithWarp(T* sum, T value) {
|
|
typedef cub::WarpReduce<T> WarpReduce;
|
|
typename WarpReduce::TempStorage temp_storage;
|
|
value = WarpReduce(temp_storage).Sum(value);
|
|
if (cub::LaneId() == 0) platform::CudaAtomicAdd(sum, value);
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void GroupNormForwardGetMeanAndVar(const T* x, int N, int C, int W,
|
|
int imsize, int groups,
|
|
int group_size, T* mean, T* var,
|
|
const DataLayout data_layout) {
|
|
int gid = blockIdx.y;
|
|
int cid = blockIdx.x;
|
|
int bid = blockIdx.z;
|
|
int H = imsize / W;
|
|
int number = min(group_size, static_cast<int>(C - gid * group_size));
|
|
int ccid = gid * group_size + cid;
|
|
if (ccid >= C) return;
|
|
T x_mean = 0, x_var = 0;
|
|
for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
|
|
T val;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
val = x[(bid * C + ccid) * imsize + imid];
|
|
} else {
|
|
int hid = imid / W;
|
|
int wid = imid % W;
|
|
val = x[(bid * H + hid) * W * C + wid * C + ccid];
|
|
}
|
|
x_mean += val;
|
|
x_var += val * val;
|
|
}
|
|
x_mean /= number * imsize;
|
|
x_var /= number * imsize;
|
|
CudaAtomicAddWithWarp(&mean[bid * groups + gid], x_mean);
|
|
CudaAtomicAddWithWarp(&var[bid * groups + gid], x_var);
|
|
}
|
|
|
|
template <typename T, int flags>
|
|
__global__ void GroupNormForward(const T* x, const T* mean, const T* var,
|
|
const T* scale, const T* bias, int N, int C,
|
|
int W, int imsize, int groups, int group_size,
|
|
T epsilon, T* y, T* real_var,
|
|
const DataLayout data_layout) {
|
|
int gid = blockIdx.y;
|
|
int cid = blockIdx.x;
|
|
int bid = blockIdx.z;
|
|
int H = imsize / W;
|
|
int ccid = gid * group_size + cid;
|
|
if (ccid >= C) return;
|
|
T x_mean = mean[bid * groups + gid];
|
|
T x_var = var[bid * groups + gid];
|
|
x_var = x_var - x_mean * x_mean;
|
|
T var_inv = 1.0 / sqrt(x_var + epsilon);
|
|
if (cid == 0 && threadIdx.x == 0) real_var[bid * groups + gid] = x_var;
|
|
for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
|
|
T val;
|
|
int hid, wid;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
val = x[(bid * C + ccid) * imsize + imid];
|
|
} else {
|
|
hid = imid / W;
|
|
wid = imid % W;
|
|
val = x[(bid * H + hid) * W * C + wid * C + ccid];
|
|
}
|
|
val = (val - x_mean) * var_inv;
|
|
if (flags & kHasScale) val *= scale[gid * group_size + cid];
|
|
if (flags & kHasBias) val += bias[gid * group_size + cid];
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
y[(bid * C + ccid) * imsize + imid] = val;
|
|
} else {
|
|
y[(bid * H + hid) * W * C + wid * C + ccid] = val;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class GroupNormKernel<platform::CUDADeviceContext, T>
|
|
: public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
|
|
const DataLayout data_layout =
|
|
framework::StringToDataLayout(data_layout_str);
|
|
const float epsilon = ctx.Attr<float>("epsilon");
|
|
auto* scale = ctx.Input<Tensor>("Scale");
|
|
auto* bias = ctx.Input<Tensor>("Bias");
|
|
auto* x = ctx.Input<Tensor>("X");
|
|
|
|
auto* y = ctx.Output<Tensor>("Y");
|
|
auto* mean = ctx.Output<Tensor>("Mean");
|
|
auto* var = ctx.Output<Tensor>("Variance");
|
|
const auto groups = ctx.Attr<int>("groups");
|
|
|
|
const auto x_dims = x->dims();
|
|
const int C =
|
|
(data_layout == DataLayout::kNCHW ? x_dims[1]
|
|
: x_dims[x_dims.size() - 1]);
|
|
const int group_size = (C - 1) / groups + 1;
|
|
const int W =
|
|
(data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1]
|
|
: x_dims[x_dims.size() - 2]);
|
|
|
|
y->mutable_data<T>(ctx.GetPlace());
|
|
mean->mutable_data<T>(ctx.GetPlace());
|
|
var->mutable_data<T>(ctx.GetPlace());
|
|
math::SetConstant<platform::CUDADeviceContext, T> set_zero;
|
|
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
Tensor temp_var;
|
|
temp_var.mutable_data<T>(var->dims(), ctx.GetPlace());
|
|
|
|
set_zero(dev_ctx, mean, static_cast<T>(0));
|
|
set_zero(dev_ctx, &temp_var, static_cast<T>(0));
|
|
|
|
auto* x_data = x->data<T>();
|
|
auto* y_data = y->data<T>();
|
|
auto* mean_data = mean->data<T>();
|
|
auto* var_data = var->data<T>();
|
|
auto* temp_var_data = temp_var.data<T>();
|
|
|
|
const T* scale_data = nullptr;
|
|
if (scale) scale_data = scale->data<T>();
|
|
const T* bias_data = nullptr;
|
|
if (bias) bias_data = bias->data<T>();
|
|
|
|
int imsize = (data_layout == DataLayout::kNCHW ? x_dims[2] * x_dims[3]
|
|
: x_dims[1] * x_dims[2]);
|
|
|
|
int block_size = std::min(1024, imsize);
|
|
dim3 grid(group_size, groups, x_dims[0]);
|
|
dim3 threads(block_size, 1, 1);
|
|
GroupNormForwardGetMeanAndVar<T><<<grid, threads, 0, dev_ctx.stream()>>>(
|
|
x_data, x_dims[0], C, W, imsize, groups, group_size, mean_data,
|
|
temp_var_data, data_layout);
|
|
int flags =
|
|
(scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias;
|
|
UNROLL_ALL_CASES(flags, GroupNormForward, x_data, mean_data, temp_var_data,
|
|
scale_data, bias_data, x_dims[0], C, W, imsize, groups,
|
|
group_size, epsilon, y_data, var_data, data_layout);
|
|
}
|
|
};
|
|
|
|
template <typename T, int flags>
|
|
__global__ void GroupNormBackwardGetMeanAndVar(
|
|
const T* x, const T* scale, const T* bias, const T* d_y, int N, int C,
|
|
int W, int imsize, int groups, int group_size, T epsilon, T* d_mean,
|
|
T* d_var, T* d_scale, T* d_bias, const DataLayout data_layout) {
|
|
int gid = blockIdx.y;
|
|
int cid = blockIdx.x;
|
|
int bid = blockIdx.z;
|
|
int H = imsize / W;
|
|
int number = min(group_size, static_cast<int>(C - gid * group_size));
|
|
int ccid = gid * group_size + cid;
|
|
if (ccid >= C) return;
|
|
T x_scale = (flags & kHasScale) ? scale[ccid] : 1;
|
|
T x_bias = (flags & kHasBias) ? bias[ccid] : 0;
|
|
T x_scale_inv = 0;
|
|
if (x_scale != 0) x_scale_inv = 1.0 / x_scale;
|
|
T d_mean_data = 0, d_var_data = 0, d_scale_data = 0, d_bias_data = 0;
|
|
|
|
for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
|
|
T val, dval;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
val = x[(bid * C + ccid) * imsize + imid] - x_bias;
|
|
dval = d_y[(bid * C + ccid) * imsize + imid];
|
|
} else {
|
|
int hid = imid / W;
|
|
int wid = imid % W;
|
|
val = x[(bid * H + hid) * W * C + wid * C + ccid] - x_bias;
|
|
dval = d_y[(bid * H + hid) * W * C + wid * C + ccid];
|
|
}
|
|
|
|
d_var_data += val * dval;
|
|
d_mean_data += dval * x_scale;
|
|
|
|
val = val * x_scale_inv;
|
|
d_bias_data += dval;
|
|
d_scale_data += val * dval;
|
|
}
|
|
CudaAtomicAddWithWarp(&d_mean[bid * groups + gid], d_mean_data);
|
|
CudaAtomicAddWithWarp(&d_var[bid * groups + gid], d_var_data);
|
|
if (flags & kHasScale) CudaAtomicAddWithWarp(&d_scale[ccid], d_scale_data);
|
|
if (flags & kHasBias) CudaAtomicAddWithWarp(&d_bias[ccid], d_bias_data);
|
|
}
|
|
|
|
template <typename T, int flags>
|
|
__global__ void GroupNormBackward(const T* x, const T* d_y, const T* scale,
|
|
const T* bias, const T* var, const T* d_mean,
|
|
const T* d_var, int N, int C, int W,
|
|
int imsize, int groups, int group_size,
|
|
T epsilon, T* d_x,
|
|
const DataLayout data_layout) {
|
|
int gid = blockIdx.y;
|
|
int cid = blockIdx.x;
|
|
int bid = blockIdx.z;
|
|
int H = imsize / W;
|
|
int number = min(group_size, static_cast<int>(C - gid * group_size));
|
|
int ccid = gid * group_size + cid;
|
|
if (ccid >= C) return;
|
|
T x_var = var[bid * groups + gid];
|
|
T d_x_mean = d_mean[bid * groups + gid];
|
|
T d_x_var = d_var[bid * groups + gid];
|
|
|
|
T x_var_inv = 1.0 / sqrt(x_var + epsilon);
|
|
T number_inv = 1.0 / (number * imsize);
|
|
|
|
T x_scale = (flags & kHasScale) ? scale[ccid] : 1;
|
|
T x_bias = (flags & kHasBias) ? bias[ccid] : 0;
|
|
T x_scale_inv = 0;
|
|
if (x_scale != 0) x_scale_inv = 1.0 / x_scale;
|
|
|
|
for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
T tmp = x[(bid * C + ccid) * imsize + imid];
|
|
T v_y = (tmp - x_bias) * x_scale_inv;
|
|
T dly = d_y[(bid * C + ccid) * imsize + imid];
|
|
d_x[(bid * C + ccid) * imsize + imid] =
|
|
x_var_inv *
|
|
(dly * x_scale - number_inv * d_x_var * v_y - number_inv * d_x_mean);
|
|
} else {
|
|
int hid = imid / W;
|
|
int wid = imid % W;
|
|
T tmp = x[(bid * H + hid) * W * C + wid * C + ccid];
|
|
T v_y = (tmp - x_bias) * x_scale_inv;
|
|
T dly = d_y[(bid * H + hid) * W * C + wid * C + ccid];
|
|
d_x[(bid * H + hid) * W * C + wid * C + ccid] =
|
|
x_var_inv *
|
|
(dly * x_scale - number_inv * d_x_var * v_y - number_inv * d_x_mean);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class GroupNormGradKernel<platform::CUDADeviceContext, T>
|
|
: public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
|
|
const DataLayout data_layout =
|
|
framework::StringToDataLayout(data_layout_str);
|
|
const float epsilon = ctx.Attr<float>("epsilon");
|
|
auto* x = ctx.Input<Tensor>("Y");
|
|
auto* var = ctx.Input<Tensor>("Variance");
|
|
auto* scale = ctx.Input<Tensor>("Scale");
|
|
auto* bias = ctx.Input<Tensor>("Bias");
|
|
auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
|
|
const auto groups = ctx.Attr<int>("groups");
|
|
|
|
// init output
|
|
auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
|
|
auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
|
|
|
|
const auto& x_dims = x->dims();
|
|
const int C =
|
|
(data_layout == DataLayout::kNCHW ? x_dims[1]
|
|
: x_dims[x_dims.size() - 1]);
|
|
const int group_size = (C - 1) / groups + 1;
|
|
const int W =
|
|
(data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1]
|
|
: x_dims[x_dims.size() - 2]);
|
|
|
|
d_x->mutable_data<T>(ctx.GetPlace());
|
|
math::SetConstant<platform::CUDADeviceContext, T> set_zero;
|
|
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
|
|
Tensor temp_var;
|
|
temp_var.mutable_data<T>(var->dims(), ctx.GetPlace());
|
|
set_zero(dev_ctx, &temp_var, static_cast<T>(0));
|
|
T* temp_var_data = temp_var.data<T>();
|
|
|
|
Tensor temp_mean;
|
|
temp_mean.mutable_data<T>(var->dims(), ctx.GetPlace());
|
|
set_zero(dev_ctx, &temp_mean, static_cast<T>(0));
|
|
T* temp_mean_data = temp_mean.data<T>();
|
|
|
|
auto* x_data = x->data<T>();
|
|
T* d_x_data = nullptr;
|
|
if (d_x) d_x_data = d_x->data<T>();
|
|
auto* y_data = d_y->data<T>();
|
|
auto* var_data = var->data<T>();
|
|
T* d_scale_data = nullptr;
|
|
if (d_scale) {
|
|
d_scale->mutable_data<T>(ctx.GetPlace());
|
|
set_zero(dev_ctx, d_scale, static_cast<T>(0));
|
|
d_scale_data = d_scale->data<T>();
|
|
}
|
|
T* d_bias_data = nullptr;
|
|
if (d_bias) {
|
|
d_bias->mutable_data<T>(ctx.GetPlace());
|
|
set_zero(dev_ctx, d_bias, static_cast<T>(0));
|
|
d_bias_data = d_bias->data<T>();
|
|
}
|
|
|
|
const T* scale_data = nullptr;
|
|
if (scale) scale_data = scale->data<T>();
|
|
const T* bias_data = nullptr;
|
|
if (bias) bias_data = bias->data<T>();
|
|
|
|
int imsize = (data_layout == DataLayout::kNCHW ? x_dims[2] * x_dims[3]
|
|
: x_dims[1] * x_dims[2]);
|
|
|
|
int block_size = std::min(1024, imsize);
|
|
dim3 grid(group_size, groups, x_dims[0]);
|
|
dim3 threads(block_size, 1, 1);
|
|
int flags =
|
|
(scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias;
|
|
UNROLL_ALL_CASES(flags, GroupNormBackwardGetMeanAndVar, x_data, scale_data,
|
|
bias_data, y_data, x_dims[0], C, W, imsize, groups,
|
|
group_size, epsilon, temp_mean_data, temp_var_data,
|
|
d_scale_data, d_bias_data, data_layout);
|
|
if (d_x_data != nullptr) {
|
|
UNROLL_ALL_CASES(flags, GroupNormBackward, x_data, y_data, scale_data,
|
|
bias_data, var_data, temp_mean_data, temp_var_data,
|
|
x_dims[0], C, W, imsize, groups, group_size, epsilon,
|
|
d_x_data, data_layout);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
group_norm,
|
|
ops::GroupNormKernel<paddle::platform::CUDADeviceContext, float>,
|
|
ops::GroupNormKernel<paddle::platform::CUDADeviceContext, double>);
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
group_norm_grad,
|
|
ops::GroupNormGradKernel<paddle::platform::CUDADeviceContext, float>,
|
|
ops::GroupNormGradKernel<paddle::platform::CUDADeviceContext, double>);
|