You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/group_norm_op.cu

373 lines
14 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "cub/cub.cuh"
#include "paddle/fluid/operators/group_norm_op.h"
#include "paddle/fluid/platform/cuda_device_function.h"
namespace paddle {
namespace operators {
using DataLayout = framework::DataLayout;
enum GroupNormKernelFlags { kHasScale = 1, kHasBias = 2 };
#define CHECK_CASE(i, flags, kernel_name, ...) \
if (i == flags) { \
kernel_name<T, i><<<grid, threads, 0, dev_ctx.stream()>>>(__VA_ARGS__); \
}
// 0 for no scale, no bias
// 1 for has scale, no bias
// 2 for no scale, has bias
// 3 for has scale, has bias
#define UNROLL_ALL_CASES(flags, kernel_name, ...) \
CHECK_CASE(0, flags, kernel_name, __VA_ARGS__) \
CHECK_CASE(1, flags, kernel_name, __VA_ARGS__) \
CHECK_CASE(2, flags, kernel_name, __VA_ARGS__) \
CHECK_CASE(3, flags, kernel_name, __VA_ARGS__)
template <typename T>
__device__ __inline__ void CudaAtomicAddWithWarp(T* sum, T value) {
typedef cub::WarpReduce<T> WarpReduce;
typename WarpReduce::TempStorage temp_storage;
value = WarpReduce(temp_storage).Sum(value);
if (cub::LaneId() == 0) platform::CudaAtomicAdd(sum, value);
}
template <typename T>
__global__ void GroupNormForwardGetMeanAndVar(const T* x, int N, int C, int W,
int imsize, int groups,
int group_size, T* mean, T* var,
const DataLayout data_layout) {
int gid = blockIdx.y;
int cid = blockIdx.x;
int bid = blockIdx.z;
int H = imsize / W;
int number = min(group_size, static_cast<int>(C - gid * group_size));
int ccid = gid * group_size + cid;
if (ccid >= C) return;
T x_mean = 0, x_var = 0;
for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
T val;
if (data_layout == DataLayout::kNCHW) {
val = x[(bid * C + ccid) * imsize + imid];
} else {
int hid = imid / W;
int wid = imid % W;
val = x[(bid * H + hid) * W * C + wid * C + ccid];
}
x_mean += val;
x_var += val * val;
}
x_mean /= number * imsize;
x_var /= number * imsize;
CudaAtomicAddWithWarp(&mean[bid * groups + gid], x_mean);
CudaAtomicAddWithWarp(&var[bid * groups + gid], x_var);
}
template <typename T, int flags>
__global__ void GroupNormForward(const T* x, const T* mean, const T* var,
const T* scale, const T* bias, int N, int C,
int W, int imsize, int groups, int group_size,
T epsilon, T* y, T* real_var,
const DataLayout data_layout) {
int gid = blockIdx.y;
int cid = blockIdx.x;
int bid = blockIdx.z;
int H = imsize / W;
int ccid = gid * group_size + cid;
if (ccid >= C) return;
T x_mean = mean[bid * groups + gid];
T x_var = var[bid * groups + gid];
x_var = x_var - x_mean * x_mean;
T var_inv = 1.0 / sqrt(x_var + epsilon);
if (cid == 0 && threadIdx.x == 0) real_var[bid * groups + gid] = x_var;
for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
T val;
int hid, wid;
if (data_layout == DataLayout::kNCHW) {
val = x[(bid * C + ccid) * imsize + imid];
} else {
hid = imid / W;
wid = imid % W;
val = x[(bid * H + hid) * W * C + wid * C + ccid];
}
val = (val - x_mean) * var_inv;
if (flags & kHasScale) val *= scale[gid * group_size + cid];
if (flags & kHasBias) val += bias[gid * group_size + cid];
if (data_layout == DataLayout::kNCHW) {
y[(bid * C + ccid) * imsize + imid] = val;
} else {
y[(bid * H + hid) * W * C + wid * C + ccid] = val;
}
}
}
template <typename T>
class GroupNormKernel<platform::CUDADeviceContext, T>
: public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout data_layout =
framework::StringToDataLayout(data_layout_str);
const float epsilon = ctx.Attr<float>("epsilon");
auto* scale = ctx.Input<Tensor>("Scale");
auto* bias = ctx.Input<Tensor>("Bias");
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Output<Tensor>("Y");
auto* mean = ctx.Output<Tensor>("Mean");
auto* var = ctx.Output<Tensor>("Variance");
const auto groups = ctx.Attr<int>("groups");
const auto x_dims = x->dims();
const int C =
(data_layout == DataLayout::kNCHW ? x_dims[1]
: x_dims[x_dims.size() - 1]);
const int group_size = (C - 1) / groups + 1;
const int W =
(data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1]
: x_dims[x_dims.size() - 2]);
y->mutable_data<T>(ctx.GetPlace());
mean->mutable_data<T>(ctx.GetPlace());
var->mutable_data<T>(ctx.GetPlace());
math::SetConstant<platform::CUDADeviceContext, T> set_zero;
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
Tensor temp_var;
temp_var.mutable_data<T>(var->dims(), ctx.GetPlace());
set_zero(dev_ctx, mean, static_cast<T>(0));
set_zero(dev_ctx, &temp_var, static_cast<T>(0));
auto* x_data = x->data<T>();
auto* y_data = y->data<T>();
auto* mean_data = mean->data<T>();
auto* var_data = var->data<T>();
auto* temp_var_data = temp_var.data<T>();
const T* scale_data = nullptr;
if (scale) scale_data = scale->data<T>();
const T* bias_data = nullptr;
if (bias) bias_data = bias->data<T>();
int imsize = (data_layout == DataLayout::kNCHW ? x_dims[2] * x_dims[3]
: x_dims[1] * x_dims[2]);
int block_size = std::min(1024, imsize);
dim3 grid(group_size, groups, x_dims[0]);
dim3 threads(block_size, 1, 1);
GroupNormForwardGetMeanAndVar<T><<<grid, threads, 0, dev_ctx.stream()>>>(
x_data, x_dims[0], C, W, imsize, groups, group_size, mean_data,
temp_var_data, data_layout);
int flags =
(scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias;
UNROLL_ALL_CASES(flags, GroupNormForward, x_data, mean_data, temp_var_data,
scale_data, bias_data, x_dims[0], C, W, imsize, groups,
group_size, epsilon, y_data, var_data, data_layout);
}
};
template <typename T, int flags>
__global__ void GroupNormBackwardGetMeanAndVar(
const T* x, const T* scale, const T* bias, const T* d_y, int N, int C,
int W, int imsize, int groups, int group_size, T epsilon, T* d_mean,
T* d_var, T* d_scale, T* d_bias, const DataLayout data_layout) {
int gid = blockIdx.y;
int cid = blockIdx.x;
int bid = blockIdx.z;
int H = imsize / W;
int number = min(group_size, static_cast<int>(C - gid * group_size));
int ccid = gid * group_size + cid;
if (ccid >= C) return;
T x_scale = (flags & kHasScale) ? scale[ccid] : 1;
T x_bias = (flags & kHasBias) ? bias[ccid] : 0;
T x_scale_inv = 0;
if (x_scale != 0) x_scale_inv = 1.0 / x_scale;
T d_mean_data = 0, d_var_data = 0, d_scale_data = 0, d_bias_data = 0;
for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
T val, dval;
if (data_layout == DataLayout::kNCHW) {
val = x[(bid * C + ccid) * imsize + imid] - x_bias;
dval = d_y[(bid * C + ccid) * imsize + imid];
} else {
int hid = imid / W;
int wid = imid % W;
val = x[(bid * H + hid) * W * C + wid * C + ccid] - x_bias;
dval = d_y[(bid * H + hid) * W * C + wid * C + ccid];
}
d_var_data += val * dval;
d_mean_data += dval * x_scale;
val = val * x_scale_inv;
d_bias_data += dval;
d_scale_data += val * dval;
}
CudaAtomicAddWithWarp(&d_mean[bid * groups + gid], d_mean_data);
CudaAtomicAddWithWarp(&d_var[bid * groups + gid], d_var_data);
if (flags & kHasScale) CudaAtomicAddWithWarp(&d_scale[ccid], d_scale_data);
if (flags & kHasBias) CudaAtomicAddWithWarp(&d_bias[ccid], d_bias_data);
}
template <typename T, int flags>
__global__ void GroupNormBackward(const T* x, const T* d_y, const T* scale,
const T* bias, const T* var, const T* d_mean,
const T* d_var, int N, int C, int W,
int imsize, int groups, int group_size,
T epsilon, T* d_x,
const DataLayout data_layout) {
int gid = blockIdx.y;
int cid = blockIdx.x;
int bid = blockIdx.z;
int H = imsize / W;
int number = min(group_size, static_cast<int>(C - gid * group_size));
int ccid = gid * group_size + cid;
if (ccid >= C) return;
T x_var = var[bid * groups + gid];
T d_x_mean = d_mean[bid * groups + gid];
T d_x_var = d_var[bid * groups + gid];
T x_var_inv = 1.0 / sqrt(x_var + epsilon);
T number_inv = 1.0 / (number * imsize);
T x_scale = (flags & kHasScale) ? scale[ccid] : 1;
T x_bias = (flags & kHasBias) ? bias[ccid] : 0;
T x_scale_inv = 0;
if (x_scale != 0) x_scale_inv = 1.0 / x_scale;
for (int imid = threadIdx.x; imid < imsize; imid += blockDim.x) {
if (data_layout == DataLayout::kNCHW) {
T tmp = x[(bid * C + ccid) * imsize + imid];
T v_y = (tmp - x_bias) * x_scale_inv;
T dly = d_y[(bid * C + ccid) * imsize + imid];
d_x[(bid * C + ccid) * imsize + imid] =
x_var_inv *
(dly * x_scale - number_inv * d_x_var * v_y - number_inv * d_x_mean);
} else {
int hid = imid / W;
int wid = imid % W;
T tmp = x[(bid * H + hid) * W * C + wid * C + ccid];
T v_y = (tmp - x_bias) * x_scale_inv;
T dly = d_y[(bid * H + hid) * W * C + wid * C + ccid];
d_x[(bid * H + hid) * W * C + wid * C + ccid] =
x_var_inv *
(dly * x_scale - number_inv * d_x_var * v_y - number_inv * d_x_mean);
}
}
}
template <typename T>
class GroupNormGradKernel<platform::CUDADeviceContext, T>
: public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout data_layout =
framework::StringToDataLayout(data_layout_str);
const float epsilon = ctx.Attr<float>("epsilon");
auto* x = ctx.Input<Tensor>("Y");
auto* var = ctx.Input<Tensor>("Variance");
auto* scale = ctx.Input<Tensor>("Scale");
auto* bias = ctx.Input<Tensor>("Bias");
auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
const auto groups = ctx.Attr<int>("groups");
// init output
auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
const auto& x_dims = x->dims();
const int C =
(data_layout == DataLayout::kNCHW ? x_dims[1]
: x_dims[x_dims.size() - 1]);
const int group_size = (C - 1) / groups + 1;
const int W =
(data_layout == DataLayout::kNCHW ? x_dims[x_dims.size() - 1]
: x_dims[x_dims.size() - 2]);
d_x->mutable_data<T>(ctx.GetPlace());
math::SetConstant<platform::CUDADeviceContext, T> set_zero;
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
Tensor temp_var;
temp_var.mutable_data<T>(var->dims(), ctx.GetPlace());
set_zero(dev_ctx, &temp_var, static_cast<T>(0));
T* temp_var_data = temp_var.data<T>();
Tensor temp_mean;
temp_mean.mutable_data<T>(var->dims(), ctx.GetPlace());
set_zero(dev_ctx, &temp_mean, static_cast<T>(0));
T* temp_mean_data = temp_mean.data<T>();
auto* x_data = x->data<T>();
T* d_x_data = nullptr;
if (d_x) d_x_data = d_x->data<T>();
auto* y_data = d_y->data<T>();
auto* var_data = var->data<T>();
T* d_scale_data = nullptr;
if (d_scale) {
d_scale->mutable_data<T>(ctx.GetPlace());
set_zero(dev_ctx, d_scale, static_cast<T>(0));
d_scale_data = d_scale->data<T>();
}
T* d_bias_data = nullptr;
if (d_bias) {
d_bias->mutable_data<T>(ctx.GetPlace());
set_zero(dev_ctx, d_bias, static_cast<T>(0));
d_bias_data = d_bias->data<T>();
}
const T* scale_data = nullptr;
if (scale) scale_data = scale->data<T>();
const T* bias_data = nullptr;
if (bias) bias_data = bias->data<T>();
int imsize = (data_layout == DataLayout::kNCHW ? x_dims[2] * x_dims[3]
: x_dims[1] * x_dims[2]);
int block_size = std::min(1024, imsize);
dim3 grid(group_size, groups, x_dims[0]);
dim3 threads(block_size, 1, 1);
int flags =
(scale_data != nullptr) * kHasScale + (bias_data != nullptr) * kHasBias;
UNROLL_ALL_CASES(flags, GroupNormBackwardGetMeanAndVar, x_data, scale_data,
bias_data, y_data, x_dims[0], C, W, imsize, groups,
group_size, epsilon, temp_mean_data, temp_var_data,
d_scale_data, d_bias_data, data_layout);
if (d_x_data != nullptr) {
UNROLL_ALL_CASES(flags, GroupNormBackward, x_data, y_data, scale_data,
bias_data, var_data, temp_mean_data, temp_var_data,
x_dims[0], C, W, imsize, groups, group_size, epsilon,
d_x_data, data_layout);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
group_norm,
ops::GroupNormKernel<paddle::platform::CUDADeviceContext, float>,
ops::GroupNormKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
group_norm_grad,
ops::GroupNormGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::GroupNormGradKernel<paddle::platform::CUDADeviceContext, double>);