You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/group_norm_op.h

308 lines
12 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <string>
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;
template <typename DeviceContext, typename T>
class GroupNormKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout data_layout =
framework::StringToDataLayout(data_layout_str);
const float epsilon = ctx.Attr<float>("epsilon");
auto* scale = ctx.Input<Tensor>("Scale");
auto* bias = ctx.Input<Tensor>("Bias");
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Output<Tensor>("Y");
auto* mean = ctx.Output<Tensor>("Mean");
auto* var = ctx.Output<Tensor>("Variance");
const auto groups = ctx.Attr<int>("groups");
const auto x_dims = x->dims();
const int C =
(data_layout == DataLayout::kNCHW ? x_dims[1]
: x_dims[x_dims.size() - 1]);
const int group_size = (C - 1) / groups + 1;
y->mutable_data<T>(ctx.GetPlace());
mean->mutable_data<T>(ctx.GetPlace());
var->mutable_data<T>(ctx.GetPlace());
auto* x_data = x->data<T>();
auto* y_data = y->data<T>();
auto* mean_data = mean->data<T>();
auto* var_data = var->data<T>();
const T* scale_data = nullptr;
if (scale) scale_data = scale->data<T>();
const T* bias_data = nullptr;
if (bias) bias_data = bias->data<T>();
int imsize = (data_layout == DataLayout::kNCHW ? x_dims[2] * x_dims[3]
: x_dims[1] * x_dims[2]);
auto* iter_x_data = x_data;
auto* iter_y_data = y_data;
for (int bid = 0; bid < x_dims[0]; bid++) {
for (int gid = 0; gid < groups; gid++) {
T x_mean = 0, x_var = 0;
int number =
std::min(group_size, static_cast<int>(C - gid * group_size));
auto* tmp_x = iter_x_data;
auto* x_src_data = iter_x_data;
auto* tmp_y = iter_y_data;
auto* y_src_data = iter_y_data;
if (data_layout == DataLayout::kNCHW) {
for (int cid = 0; cid < number; cid++) {
for (int imid = 0; imid < imsize; imid++, iter_x_data++) {
x_mean += iter_x_data[0];
x_var += iter_x_data[0] * iter_x_data[0];
}
}
} else {
for (int cid = 0; cid < number; cid++) {
iter_x_data = tmp_x + cid;
for (int imid = 0; imid < imsize; imid++, iter_x_data += C) {
x_mean += iter_x_data[0];
x_var += iter_x_data[0] * iter_x_data[0];
}
}
iter_x_data = tmp_x + group_size;
}
x_mean /= number * imsize;
x_var /= number * imsize;
x_var = x_var - x_mean * x_mean;
T var_inv = 1.0 / sqrt(x_var + epsilon);
mean_data[bid * groups + gid] = x_mean;
var_data[bid * groups + gid] = x_var;
if (data_layout == DataLayout::kNCHW) {
for (int cid = 0; cid < number; cid++) {
for (int imid = 0; imid < imsize; imid++, tmp_x++, iter_y_data++) {
T val = (tmp_x[0] - x_mean) * var_inv;
if (scale_data) val *= scale_data[gid * group_size + cid];
if (bias_data) val += bias_data[gid * group_size + cid];
iter_y_data[0] = val;
}
}
} else {
for (int cid = 0; cid < number; cid++) {
tmp_x = x_src_data + cid;
iter_y_data = y_src_data + cid;
for (int imid = 0; imid < imsize;
imid++, tmp_x += C, iter_y_data += C) {
T val = (tmp_x[0] - x_mean) * var_inv;
if (scale_data) val *= scale_data[gid * group_size + cid];
if (bias_data) val += bias_data[gid * group_size + cid];
iter_y_data[0] = val;
}
}
iter_y_data = tmp_y + group_size;
}
}
if (data_layout == DataLayout::kNHWC) {
iter_x_data = x_data + (bid + 1) * C * imsize;
iter_y_data = y_data + (bid + 1) * C * imsize;
}
}
}
};
template <typename DeviceContext, typename T>
class GroupNormGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout data_layout =
framework::StringToDataLayout(data_layout_str);
const float epsilon = ctx.Attr<float>("epsilon");
auto* x = ctx.Input<Tensor>("Y");
auto* var = ctx.Input<Tensor>("Variance");
auto* scale = ctx.Input<Tensor>("Scale");
auto* bias = ctx.Input<Tensor>("Bias");
auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
const auto groups = ctx.Attr<int>("groups");
// init output
auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
const auto& x_dims = x->dims();
const int C =
(data_layout == DataLayout::kNCHW ? x_dims[1]
: x_dims[x_dims.size() - 1]);
const int group_size = (C - 1) / groups + 1;
d_x->mutable_data<T>(ctx.GetPlace());
math::SetConstant<DeviceContext, T> set_zero;
auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto* x_data = x->data<T>();
auto* d_x_data = d_x->data<T>();
auto* y_data = d_y->data<T>();
auto* var_data = var->data<T>();
T* d_scale_data = nullptr;
if (d_scale) {
d_scale->mutable_data<T>(ctx.GetPlace());
set_zero(dev_ctx, d_scale, static_cast<T>(0));
d_scale_data = d_scale->data<T>();
}
T* d_bias_data = nullptr;
if (d_bias) {
d_bias->mutable_data<T>(ctx.GetPlace());
set_zero(dev_ctx, d_bias, static_cast<T>(0));
d_bias_data = d_bias->data<T>();
}
const T* scale_data = nullptr;
if (scale) scale_data = scale->data<T>();
const T* bias_data = nullptr;
if (bias) bias_data = bias->data<T>();
int imsize = (data_layout == DataLayout::kNCHW ? x_dims[2] * x_dims[3]
: x_dims[1] * x_dims[2]);
auto* iter_x_data = x_data;
auto* iter_d_x_data = d_x_data;
auto* iter_y_data = y_data;
for (int bid = 0; bid < x_dims[0]; bid++) {
for (int gid = 0; gid < groups; gid++) {
T x_var = var_data[bid * groups + gid];
T var_inv = 1.0 / sqrt(x_var + epsilon);
int number =
std::min(group_size, static_cast<int>(C - gid * group_size));
T number_inv = 1.0 / (number * imsize);
auto* tmp_x = iter_x_data;
auto* tmp_y = iter_y_data;
auto* tmp_d_x = iter_d_x_data;
auto* x_src_data = iter_x_data;
auto* y_src_data = iter_y_data;
auto* iter_x_data_backup = iter_x_data;
auto* iter_y_data_backup = iter_y_data;
auto* iter_d_x_data_backup = iter_d_x_data;
T dp_scale = 0, dp_bias = 0;
if (data_layout == DataLayout::kNCHW) {
for (int cid = 0; cid < number; cid++) {
for (int imid = 0; imid < imsize;
imid++, iter_x_data++, iter_y_data++) {
T val = iter_x_data[0];
if (bias_data) val -= bias_data[gid * group_size + cid];
T dval = iter_y_data[0];
dp_scale += val * dval;
if (scale_data)
dp_bias += dval * scale_data[gid * group_size + cid];
if (scale_data && scale_data[gid * group_size + cid] != 0)
val /= scale_data[gid * group_size + cid];
if (d_bias_data) d_bias_data[gid * group_size + cid] += dval;
if (d_scale_data)
d_scale_data[gid * group_size + cid] += val * dval;
}
}
for (int cid = 0; cid < number; cid++) {
for (int imid = 0; imid < imsize;
imid++, iter_d_x_data++, tmp_x++, tmp_y++) {
T v_y = tmp_x[0];
T dly = tmp_y[0];
T dss = dp_scale;
T dbs = dp_bias;
T v_scale = 1., v_bias = 0.;
if (scale_data) v_scale = scale_data[gid * group_size + cid];
if (bias_data) v_bias = bias_data[gid * group_size + cid];
v_y -= v_bias;
if (v_scale != 0) v_y /= v_scale;
iter_d_x_data[0] =
(dly * v_scale - number_inv * dss * v_y - number_inv * dbs) *
var_inv;
}
}
} else {
for (int cid = 0; cid < number; cid++) {
iter_x_data = x_src_data + cid;
iter_y_data = y_src_data + cid;
for (int imid = 0; imid < imsize;
imid++, iter_x_data += C, iter_y_data += C) {
T val = iter_x_data[0];
if (bias_data) val -= bias_data[gid * group_size + cid];
T dval = iter_y_data[0];
dp_scale += val * dval;
if (scale_data)
dp_bias += dval * scale_data[gid * group_size + cid];
if (scale_data && scale_data[gid * group_size + cid] != 0)
val /= scale_data[gid * group_size + cid];
if (d_bias_data) d_bias_data[gid * group_size + cid] += dval;
if (d_scale_data)
d_scale_data[gid * group_size + cid] += val * dval;
}
}
for (int cid = 0; cid < number; cid++) {
tmp_x = x_src_data + cid;
tmp_y = y_src_data + cid;
iter_d_x_data = tmp_d_x + cid;
for (int imid = 0; imid < imsize;
imid++, iter_d_x_data += C, tmp_x += C, tmp_y += C) {
T v_y = tmp_x[0];
T dly = tmp_y[0];
T dss = dp_scale;
T dbs = dp_bias;
T v_scale = 1.0, v_bias = 0.;
if (scale_data) v_scale = scale_data[gid * group_size + cid];
if (bias_data) v_bias = bias_data[gid * group_size + cid];
v_y -= v_bias;
if (v_scale != 0) v_y /= v_scale;
iter_d_x_data[0] =
(dly * v_scale - number_inv * dss * v_y - number_inv * dbs) *
var_inv;
}
}
iter_x_data = iter_x_data_backup + group_size;
iter_y_data = iter_y_data_backup + group_size;
iter_d_x_data = iter_d_x_data_backup + group_size;
}
}
if (data_layout == DataLayout::kNHWC) {
iter_x_data = x_data + (bid + 1) * C * imsize;
iter_d_x_data = d_x_data + (bid + 1) * C * imsize;
iter_y_data = y_data + (bid + 1) * C * imsize;
}
}
}
};
} // namespace operators
} // namespace paddle