You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
209 lines
7.9 KiB
209 lines
7.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/lookup_table_op.h"
|
|
|
|
#include <memory>
|
|
|
|
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
|
|
#include "paddle/fluid/framework/var_type_inference.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class LookupTableOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "LookupTable");
|
|
OP_INOUT_CHECK(ctx->HasInput("Ids"), "Input", "Ids", "LookupTable");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "LookupTable");
|
|
|
|
auto table_dims = ctx->GetInputDim("W");
|
|
auto ids_dims = ctx->GetInputDim("Ids");
|
|
int ids_rank = ids_dims.size();
|
|
VLOG(5) << "ids rank is " << ids_rank << std::endl;
|
|
PADDLE_ENFORCE_EQ(
|
|
table_dims.size(), 2,
|
|
platform::errors::InvalidArgument(
|
|
"ShapeError: The dimensions of the 'lookup table' must be 2. "
|
|
"But received lookup table's dimensions = %d, "
|
|
"lookup table's shape = [%s].",
|
|
table_dims.size(), table_dims));
|
|
PADDLE_ENFORCE_EQ(
|
|
ids_dims[ids_rank - 1], 1,
|
|
platform::errors::InvalidArgument(
|
|
"ShapeError: The last dimensions of the 'Ids' tensor must be 1. "
|
|
"But received Ids's last dimensions = %d, Ids's shape = [%s].",
|
|
ids_dims[ids_rank - 1], ids_dims));
|
|
|
|
auto output_dims =
|
|
framework::vectorize(framework::slice_ddim(ids_dims, 0, ids_rank - 1));
|
|
output_dims.push_back(table_dims[1]);
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
|
|
|
|
if (ctx->GetOutputsVarType("Out")[0] ==
|
|
framework::proto::VarType::LOD_TENSOR) {
|
|
ctx->ShareLoD("Ids", /*->*/ "Out");
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "W");
|
|
return framework::OpKernelType(data_type, ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("W",
|
|
"(Tensor) The input represents embedding tensors, "
|
|
"which is a learnable parameter.");
|
|
AddInput("Ids",
|
|
"An input with type int64 "
|
|
"contains the ids to be looked up in W. "
|
|
"The last dimension size must be 1.");
|
|
AddOutput("Out", "The lookup results, which have the same type as W.");
|
|
AddAttr<bool>("is_sparse",
|
|
"(boolean, default false) "
|
|
"Sparse update.")
|
|
.SetDefault(false);
|
|
AddAttr<bool>("is_distributed",
|
|
"(boolean, default false) distributed lookup table.")
|
|
.SetDefault(false);
|
|
AddAttr<int64_t>("padding_idx",
|
|
"(int64, default -1) "
|
|
"If the value is -1, it makes no effect to lookup. "
|
|
"Otherwise the given value indicates padding the output "
|
|
"with zeros whenever lookup encounters it in Ids.")
|
|
.SetDefault(kNoPadding);
|
|
// NOTE(minqiyang): grad_inplace is an temporal attribute,
|
|
// please do NOT set this attribute in python layer.
|
|
AddAttr<bool>("grad_inplace",
|
|
"(boolean, default false) "
|
|
"If the grad op reuse the input's variable.")
|
|
.SetDefault(false);
|
|
|
|
// for parameter prefetch
|
|
AddAttr<bool>("remote_prefetch", "").SetDefault(false);
|
|
AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
|
|
AddAttr<std::vector<int64_t>>("height_sections",
|
|
"Height for each output SelectedRows.")
|
|
.SetDefault(std::vector<int64_t>({}));
|
|
AddAttr<std::vector<std::string>>(
|
|
"epmap",
|
|
"(string vector, default 127.0.0.1:6164)"
|
|
"Server endpoints in the order of input variables for mapping")
|
|
.SetDefault({});
|
|
AddAttr<std::vector<std::string>>(
|
|
"table_names",
|
|
"(string vector, the split table names that will be fetched from "
|
|
"parameter server)"
|
|
"in the order of input variables for mapping")
|
|
.SetDefault({});
|
|
|
|
AddComment(R"DOC(
|
|
Lookup Table Operator.
|
|
|
|
This operator is used to perform lookups on the parameter W,
|
|
then concatenated into a dense tensor.
|
|
|
|
The input Ids can carry the LoD (Level of Details) information,
|
|
or not. And the output only shares the LoD information with input Ids.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LookupTableGradOpNoBufferVarsInferer, "W");
|
|
|
|
template <typename T>
|
|
class LookupTableGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("lookup_table_grad");
|
|
|
|
op->SetInput("W", this->Input("W"));
|
|
op->SetInput("Ids", this->Input("Ids"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
|
|
op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
|
|
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
class LookupTableOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
auto table_dims = ctx->GetInputDim("W");
|
|
ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto data_type = OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out"));
|
|
return framework::OpKernelType(data_type, ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(framework::InferVarTypeContext* ctx) const override {
|
|
auto out_var_name = framework::GradVarName("W");
|
|
auto attr = ctx->GetAttr("is_sparse");
|
|
bool is_sparse = BOOST_GET(bool, attr);
|
|
if (is_sparse) {
|
|
VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
|
|
<< " is set to SelectedRows";
|
|
ctx->SetOutputType(out_var_name,
|
|
framework::proto::VarType::SELECTED_ROWS);
|
|
} else {
|
|
VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
|
|
<< " is set to LoDTensor";
|
|
ctx->SetOutputType(out_var_name, framework::proto::VarType::LOD_TENSOR);
|
|
}
|
|
ctx->SetOutputDataType(out_var_name, ctx->GetInputDataType("W"));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp, ops::LookupTableOpMaker,
|
|
ops::LookupTableGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::LookupTableGradOpMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
|
|
ops::LookupTableGradOpNoBufferVarsInferer,
|
|
ops::LookupTableOpGradVarTypeInference);
|
|
|
|
REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
|
|
ops::LookupTableKernel<double>,
|
|
ops::LookupTableKernel<int8_t>);
|
|
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
|
|
ops::LookupTableGradKernel<double>);
|