You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
5.6 KiB
136 lines
5.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/metrics/accuracy_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class AccuracyOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Out"), true,
|
|
platform::errors::NotFound("Input (Out) of AccuracyOp is not found."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Indices"), true,
|
|
platform::errors::NotFound(
|
|
"Input (Indices) of AccuracyOp is not found."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Label"), true,
|
|
platform::errors::NotFound(
|
|
"Input (Label) of AccuracyOp is not found."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Accuracy"), true,
|
|
platform::errors::NotFound(
|
|
"Output (Accuracy) of AccuracyOp is not found."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Correct"), true,
|
|
platform::errors::NotFound(
|
|
"Output (Correct) of AccuracyOp is not found."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Total"), true,
|
|
platform::errors::NotFound(
|
|
"Output (Total) of AccuracyOp is not found."));
|
|
|
|
OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "Accuracy");
|
|
OP_INOUT_CHECK(ctx->HasInput("Indices"), "Input", "Indices", "Accuracy");
|
|
OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "Accuracy");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Accuracy"), "Output", "Accuracy",
|
|
"Accuracy");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Correct"), "Output", "Correct", "Accuracy");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Total"), "Output", "Total", "Accuracy");
|
|
|
|
auto inference_dim = ctx->GetInputDim("Out");
|
|
auto label_dim = ctx->GetInputDim("Label");
|
|
// Assume indices has same shape as inference, because
|
|
// it's the output of topk.
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
label_dim.size(), 2,
|
|
platform::errors::InvalidArgument(
|
|
"ShapeError: label's dimensions of AccuracyOp must be 2. "
|
|
"But received label's dimensions = %d, label's shape = [%s]",
|
|
label_dim.size(), label_dim));
|
|
if (ctx->IsRuntime()) {
|
|
PADDLE_ENFORCE_EQ(label_dim[1], 1,
|
|
platform::errors::InvalidArgument(
|
|
"ShapeError: label's second dimension of "
|
|
"AccuracyOp must be 1. But received label's "
|
|
"second dimension is = %d, label's shape = [%s]",
|
|
label_dim[1], label_dim));
|
|
PADDLE_ENFORCE_EQ(
|
|
inference_dim[0], label_dim[0],
|
|
platform::errors::InvalidArgument(
|
|
"ShapeError: the output's num_rows of AccuracyOp must be"
|
|
" the same as label's num_rows. But received output's "
|
|
"shape = [%s], label's shape = [%s], output's num_rows = %d, "
|
|
"label's "
|
|
"num_rows = %d",
|
|
inference_dim, label_dim, inference_dim[0], label_dim[0]));
|
|
}
|
|
|
|
ctx->SetOutputDim("Accuracy", {1});
|
|
ctx->SetOutputDim("Correct", {1});
|
|
ctx->SetOutputDim("Total", {1});
|
|
ctx->ShareLoD("Out", /*->*/ "Accuracy");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "Out"), ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
// TODO(typhoonzero): support both inference value and indices.
|
|
AddInput("Out", "The network output of topk (inferences)");
|
|
AddInput("Indices", "The the network output of topk (indices)");
|
|
AddInput("Label", "Label of the training data");
|
|
// TODO(typhoonzero): AddInput("Weight", ...
|
|
AddOutput("Accuracy", "The accuracy of current batch");
|
|
AddOutput("Correct", "The correct samples count of current batch");
|
|
AddOutput("Total", "The samples count of current batch");
|
|
|
|
AddComment(R"DOC(
|
|
Accuracy Operator.
|
|
|
|
It will print accuracy rate for classification.
|
|
The accuracy is calculated as follows:
|
|
|
|
$$accuracy = \frac{NumOfCorrectPredicts}{NumOfAllSamples}$$
|
|
|
|
Both the input Out and Label can carry the LoD (Level of Details)
|
|
information, or not. But the output only shares the LoD information
|
|
with the input Out(Inference).
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(
|
|
accuracy, ops::AccuracyOp, ops::AccuracyOpMaker,
|
|
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
|
|
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
|
|
// FIXME(typhoonzero): types of T is for infernece data.
|
|
// label data is always int.
|
|
REGISTER_OP_CPU_KERNEL(accuracy,
|
|
ops::AccuracyKernel<paddle::platform::CPUPlace, float>,
|
|
ops::AccuracyKernel<paddle::platform::CPUPlace, double>);
|