You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
329 lines
13 KiB
329 lines
13 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/mul_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
#endif
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::OpKernelType;
|
|
using framework::Tensor;
|
|
|
|
class MulOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Mul");
|
|
OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "Mul");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Mul");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
|
|
int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
|
|
int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
|
|
|
|
VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
|
|
<< " x_num_col_dims=" << x_num_col_dims
|
|
<< " y_num_col_dims=" << y_num_col_dims;
|
|
|
|
PADDLE_ENFORCE_NE(framework::product(y_dims), 0,
|
|
platform::errors::PreconditionNotMet(
|
|
"The Input variable Y(%s) has not "
|
|
"been initialized. You may need to confirm "
|
|
"if you put exe.run(startup_program) "
|
|
"after optimizer.minimize function.",
|
|
ctx->Inputs("Y").front()));
|
|
PADDLE_ENFORCE_GT(
|
|
x_dims.size(), x_num_col_dims,
|
|
platform::errors::InvalidArgument(
|
|
"The input tensor X's dimensions of MulOp "
|
|
"should be larger than x_num_col_dims. But received X's "
|
|
"dimensions = %d, X's shape = [%s], x_num_col_dims = %d.",
|
|
x_dims.size(), x_dims, x_num_col_dims));
|
|
PADDLE_ENFORCE_GT(
|
|
y_dims.size(), y_num_col_dims,
|
|
platform::errors::InvalidArgument(
|
|
"The input tensor Y's dimensions of MulOp "
|
|
"should be larger than y_num_col_dims. But received Y's "
|
|
"dimensions = %d, Y's shape = [%s], y_num_col_dims = %d.",
|
|
y_dims.size(), y_dims, y_num_col_dims));
|
|
|
|
auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
|
|
auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
x_mat_dims[1], y_mat_dims[0],
|
|
platform::errors::InvalidArgument(
|
|
"After flatten the input tensor X and Y to 2-D dimensions matrix "
|
|
"X1 and Y1, the matrix X1's width must be equal with matrix Y1's "
|
|
"height. But received X's shape = [%s], X1's shape = [%s], X1's "
|
|
"width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = "
|
|
"%s.",
|
|
x_dims, x_mat_dims, x_mat_dims[1], y_dims, y_mat_dims,
|
|
y_mat_dims[0]));
|
|
std::vector<int64_t> output_dims;
|
|
output_dims.reserve(
|
|
static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));
|
|
|
|
for (int i = 0; i < x_num_col_dims; ++i) {
|
|
output_dims.push_back(x_dims[i]);
|
|
}
|
|
|
|
for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
|
|
output_dims.push_back(y_dims[i]);
|
|
}
|
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const {
|
|
framework::LibraryType library = framework::LibraryType::kPlain;
|
|
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
|
|
int customized_type_value =
|
|
framework::OpKernelType::kDefaultCustomizedTypeValue;
|
|
auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
if (library == framework::LibraryType::kPlain &&
|
|
platform::CanMKLDNNBeUsed(ctx)) {
|
|
library = framework::LibraryType::kMKLDNN;
|
|
layout = framework::DataLayout::kMKLDNN;
|
|
|
|
if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
|
|
input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
|
|
customized_type_value = kMULMKLDNNINT8;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
|
|
library, customized_type_value);
|
|
}
|
|
};
|
|
|
|
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor), The first input tensor of mul op.");
|
|
AddInput("Y", "(Tensor), The second input tensor of mul op.");
|
|
AddOutput("Out", "(Tensor), The output tensor of mul op.");
|
|
AddAttr<bool>("use_mkldnn",
|
|
"(bool, default false) Only used in mkldnn kernel")
|
|
.SetDefault(false);
|
|
AddAttr<int>(
|
|
"x_num_col_dims",
|
|
R"DOC((int, default 1), The mul_op can take tensors with more than two
|
|
dimensions as its inputs. If the input $X$ is a tensor with more
|
|
than two dimensions, $X$ will be flattened into a two-dimensional
|
|
matrix first. The flattening rule is: the first `num_col_dims`
|
|
will be flattened to form the first dimension of the final matrix
|
|
(the height of the matrix), and the rest `rank(X) - num_col_dims`
|
|
dimensions are flattened to form the second dimension of the final
|
|
matrix (the width of the matrix). As a result, height of the
|
|
flattened matrix is equal to the product of $X$'s first
|
|
`x_num_col_dims` dimensions' sizes, and width of the flattened
|
|
matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
|
|
dimensions' size. For example, suppose $X$ is a 6-dimensional
|
|
tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
|
|
Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
|
|
[24, 30].
|
|
)DOC")
|
|
.SetDefault(1)
|
|
.EqualGreaterThan(1);
|
|
AddAttr<int>(
|
|
"y_num_col_dims",
|
|
R"DOC((int, default 1), The mul_op can take tensors with more than two,
|
|
dimensions as its inputs. If the input $Y$ is a tensor with more
|
|
than two dimensions, $Y$ will be flattened into a two-dimensional
|
|
matrix first. The attribute `y_num_col_dims` determines how $Y$ is
|
|
flattened. See comments of `x_num_col_dims` for more details.
|
|
)DOC")
|
|
.SetDefault(1)
|
|
.EqualGreaterThan(1);
|
|
AddAttr<float>(
|
|
"scale_x",
|
|
"scale_x to be used for int8 mul input data x. scale_x has the"
|
|
"same purpose as scale_in in OPs that support quantization."
|
|
"Only to be used with MKL-DNN INT8")
|
|
.SetDefault(1.0f);
|
|
AddAttr<std::vector<float>>(
|
|
"scale_y",
|
|
"scale_y to be used for int8 mul input data y. scale_y has the"
|
|
"same purpose as scale_weights in OPs that support quantization."
|
|
"Only to be used with MKL-DNN INT8")
|
|
.SetDefault({1.0f});
|
|
AddAttr<float>("scale_out",
|
|
"scale_out to be used for int8 output data."
|
|
"Only used with MKL-DNN INT8")
|
|
.SetDefault(1.0f);
|
|
AddAttr<bool>(
|
|
"force_fp32_output",
|
|
"(bool, default false) Force quantize kernel output FP32, only "
|
|
"used in quantized MKL-DNN.")
|
|
.SetDefault(false);
|
|
AddComment(R"DOC(
|
|
Mul Operator.
|
|
|
|
This operator is used to perform matrix multiplication for input $X$ and $Y$.
|
|
|
|
The equation is:
|
|
|
|
$$Out = X * Y$$
|
|
|
|
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
|
|
or not. But the output only shares the LoD information with input $X$.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
|
|
protected:
|
|
std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
|
|
const override {
|
|
static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
|
|
return m;
|
|
}
|
|
};
|
|
|
|
class MulGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul");
|
|
OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul");
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
|
"Out@GRAD", "mul");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
auto y_grad_name = framework::GradVarName("Y");
|
|
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
}
|
|
if (ctx->HasOutput(y_grad_name)) {
|
|
ctx->SetOutputDim(y_grad_name, y_dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class MulOpGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> retv) const override {
|
|
retv->SetType("mul_grad");
|
|
retv->SetInput("X", this->Input("X"));
|
|
retv->SetInput("Y", this->Input("Y"));
|
|
retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
|
|
retv->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
class MulDoubleGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul");
|
|
OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul");
|
|
OP_INOUT_CHECK(ctx->HasInput("DOut"), "Input", "DOut", "mul");
|
|
|
|
if (ctx->HasOutput("DDOut") &&
|
|
(ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) {
|
|
ctx->ShareDim("DOut", "DDOut");
|
|
}
|
|
if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
|
|
ctx->ShareDim("X", "DX");
|
|
}
|
|
if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
|
|
ctx->ShareDim("Y", "DY");
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class MulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> retv) const override {
|
|
retv->SetType("mul_grad_grad");
|
|
|
|
retv->SetInput("X", this->Input("X"));
|
|
retv->SetInput("Y", this->Input("Y"));
|
|
retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
|
|
retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
|
|
retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
|
|
|
|
auto ddx = this->OutputGrad(framework::GradVarName("X"));
|
|
auto ddw = this->OutputGrad(framework::GradVarName("Y"));
|
|
|
|
if (!ddx.empty() || !ddw.empty()) {
|
|
retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
|
|
}
|
|
retv->SetOutput(
|
|
"DX", ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
|
|
retv->SetOutput(
|
|
"DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));
|
|
|
|
retv->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
|
|
ops::MulOpGradMaker<paddle::framework::OpDesc>,
|
|
ops::MulOpGradMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(mul_grad, ops::MulGradOp,
|
|
ops::MulDoubleGradMaker<paddle::framework::OpDesc>,
|
|
ops::MulDoubleGradMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::MulKernel<paddle::platform::CPUDeviceContext, double>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::MulGradKernel<paddle::platform::CPUDeviceContext, double>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
mul_grad_grad,
|
|
ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
|