You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
207 lines
7.6 KiB
207 lines
7.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/operator.h"
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
constexpr int kMULMKLDNNINT8 = 1;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class MulKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* x = context.Input<Tensor>("X");
|
|
const Tensor* y = context.Input<Tensor>("Y");
|
|
Tensor* z = context.Output<Tensor>("Out");
|
|
const Tensor x_matrix =
|
|
x->dims().size() > 2
|
|
? framework::ReshapeToMatrix(
|
|
*x, context.template Attr<int>("x_num_col_dims"))
|
|
: *x;
|
|
const Tensor y_matrix =
|
|
y->dims().size() > 2
|
|
? framework::ReshapeToMatrix(
|
|
*y, context.template Attr<int>("y_num_col_dims"))
|
|
: *y;
|
|
|
|
z->mutable_data<T>(context.GetPlace());
|
|
auto z_dim = z->dims();
|
|
if (z_dim.size() != 2) {
|
|
z->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
|
|
}
|
|
|
|
auto blas = math::GetBlas<DeviceContext, T>(context);
|
|
|
|
blas.MatMul(x_matrix, y_matrix, z);
|
|
if (z_dim.size() != 2) {
|
|
z->Resize(z_dim);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class MulGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
int x_num_col_dims = ctx.template Attr<int>("x_num_col_dims");
|
|
int y_num_col_dims = ctx.template Attr<int>("y_num_col_dims");
|
|
auto* x = ctx.Input<framework::LoDTensor>("X");
|
|
auto* y = ctx.Input<framework::LoDTensor>("Y");
|
|
auto x_matrix = x->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*x, x_num_col_dims)
|
|
: static_cast<const Tensor&>(*x);
|
|
auto y_matrix = y->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*y, y_num_col_dims)
|
|
: static_cast<const Tensor&>(*y);
|
|
auto* dout = ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
|
|
|
|
Tensor dout_mat;
|
|
dout_mat.ShareDataWith(*dout);
|
|
dout_mat.Resize({framework::flatten_to_2d(x->dims(), x_num_col_dims)[0],
|
|
framework::flatten_to_2d(y->dims(), y_num_col_dims)[1]});
|
|
|
|
auto* dx = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
|
auto* dy = ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));
|
|
|
|
if (dx != nullptr) {
|
|
dx->set_lod(x->lod());
|
|
}
|
|
if (dy != nullptr) {
|
|
dy->set_lod(y->lod());
|
|
}
|
|
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
|
|
if (dx) {
|
|
dx->mutable_data<T>(ctx.GetPlace());
|
|
Tensor dx_matrix = dx->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*dx, x_num_col_dims)
|
|
: *dx;
|
|
|
|
// dx = dout * y'. dx: M x K, dout : M x N, y : K x N
|
|
blas.MatMul(dout_mat, false, y_matrix, true, &dx_matrix);
|
|
}
|
|
if (dy) {
|
|
dy->mutable_data<T>(ctx.GetPlace());
|
|
Tensor dy_matrix = dy->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*dy, y_num_col_dims)
|
|
: *dy;
|
|
// dy = x' * dout. dy K x N, dout : M x N, x : M x K
|
|
blas.MatMul(x_matrix, true, dout_mat, false, &dy_matrix);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class MulDoubleGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
int x_num_col_dims = ctx.template Attr<int>("x_num_col_dims");
|
|
int y_num_col_dims = ctx.template Attr<int>("y_num_col_dims");
|
|
auto* x = ctx.Input<framework::LoDTensor>("X");
|
|
auto* y = ctx.Input<framework::LoDTensor>("Y");
|
|
auto x_mat = x->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*x, x_num_col_dims)
|
|
: static_cast<const Tensor&>(*x);
|
|
auto y_mat = y->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*y, y_num_col_dims)
|
|
: static_cast<const Tensor&>(*y);
|
|
|
|
const int m = framework::flatten_to_2d(x->dims(), x_num_col_dims)[0];
|
|
const int n = framework::flatten_to_2d(y->dims(), y_num_col_dims)[1];
|
|
|
|
auto* dout = ctx.Input<framework::LoDTensor>("DOut");
|
|
Tensor dout_mat;
|
|
dout_mat.ShareDataWith(*dout);
|
|
dout_mat.Resize({m, n});
|
|
|
|
auto* ddx = ctx.Input<framework::LoDTensor>("DDX");
|
|
auto* ddy = ctx.Input<framework::LoDTensor>("DDY");
|
|
|
|
auto* dx = ctx.Output<framework::LoDTensor>("DX");
|
|
auto* dy = ctx.Output<framework::LoDTensor>("DY");
|
|
auto* ddout = ctx.Output<framework::LoDTensor>("DDOut");
|
|
|
|
Tensor ddout_mat;
|
|
if (ddout) {
|
|
ddout->set_lod(dout->lod());
|
|
// allocate and reshape ddout
|
|
ddout->mutable_data<T>(ctx.GetPlace());
|
|
ddout_mat.ShareDataWith(*ddout);
|
|
ddout_mat.Resize({m, n});
|
|
}
|
|
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
|
|
// a flag to specify whether ddout value has been set, if flag
|
|
// is false, MatMul beta should be 0 to set ddout, if flag is
|
|
// true, MatMul beta should be 1 to add result to ddout.
|
|
bool ddout_flag = false;
|
|
if (ddx) {
|
|
auto ddx_mat = ddx->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*ddx, x_num_col_dims)
|
|
: static_cast<const Tensor&>(*ddx);
|
|
|
|
// dy = ddx' * dout. dy : K x M, ddx' : K x M, dout : M x N
|
|
if (dy) {
|
|
dy->set_lod(y->lod());
|
|
// allocate and reshape dy
|
|
dy->mutable_data<T>(ctx.GetPlace());
|
|
Tensor dy_mat = dy->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*dy, y_num_col_dims)
|
|
: *dy;
|
|
blas.MatMul(ddx_mat, true, dout_mat, false, &dy_mat);
|
|
}
|
|
// ddout1 = ddx * y. ddx : M x K, y : K x N, ddout1 : M x N
|
|
if (ddout) {
|
|
blas.MatMul(ddx_mat, false, y_mat, false, static_cast<T>(1.0),
|
|
&ddout_mat, static_cast<T>(ddout_flag));
|
|
ddout_flag = true;
|
|
}
|
|
}
|
|
if (ddy) {
|
|
auto ddy_mat = ddy->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*ddy, y_num_col_dims)
|
|
: static_cast<const Tensor&>(*ddy);
|
|
// dx = dout * ddy'. dout : M x N, ddy' : N x K, dx : M x K
|
|
if (dx) {
|
|
dx->set_lod(x->lod());
|
|
// allocate and reshape dx
|
|
dx->mutable_data<T>(ctx.GetPlace());
|
|
Tensor dx_mat = dx->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*dx, x_num_col_dims)
|
|
: *dx;
|
|
blas.MatMul(dout_mat, false, ddy_mat, true, &dx_mat);
|
|
}
|
|
// ddout2 = x * ddy. x : M x K, ddy : K x N, ddout2 : M x N
|
|
if (ddout) {
|
|
blas.MatMul(x_mat, false, ddy_mat, false, static_cast<T>(1.0),
|
|
&ddout_mat, static_cast<T>(ddout_flag));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|