You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
141 lines
5.2 KiB
141 lines
5.2 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
Indicesou may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/p_norm_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class PnormOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor) A tensor of rank >= axis.");
|
|
AddAttr<float>("porder",
|
|
"The porder is the p order vector norm to calculate.")
|
|
.SetDefault(2.0f);
|
|
AddAttr<int>("axis",
|
|
"The axis on which to apply normalization. If axis < 0, "
|
|
"the dimension to pnorm is rank(X) + axis. -1 is "
|
|
"the last dimension.")
|
|
.SetDefault(-1);
|
|
AddAttr<float>("epsilon",
|
|
"(float, default 1e-10) The epsilon value is used "
|
|
"to avoid division by zero.")
|
|
.SetDefault(1.0e-12f);
|
|
AddAttr<bool>(
|
|
"keepdim",
|
|
"(bool, default false) Whether to keep the dimensions as the input")
|
|
.SetDefault(false);
|
|
AddOutput(
|
|
"Out",
|
|
"(Tensor) Output tensor for the `(sum(x.pow(p)) + epsion).pow(1/p)`");
|
|
AddComment(R"DOC(
|
|
|
|
Given a tensor, apply 2-normalization along the provided axis.
|
|
|
|
$$
|
|
pnorm = \(\sum_i {abs\(x_i\)^p} \)^{1/p}
|
|
$$
|
|
|
|
where, $\sum_i{x_i^p}$ is calculated along the `axis` dimension.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class PnormOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "p_norm");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "p_norm");
|
|
auto porder = ctx->Attrs().Get<float>("porder");
|
|
PADDLE_ENFORCE_NE(porder, INFINITY,
|
|
platform::errors::Unimplemented(
|
|
"The input porder of p_norm is not support for "
|
|
"porder == 0, INFINITY, -INFINITY now."));
|
|
PADDLE_ENFORCE_NE(porder, -INFINITY,
|
|
platform::errors::Unimplemented(
|
|
"The input porder of p_norm is not support for "
|
|
"porder == 0, INFINITY, -INFINITY now."));
|
|
PADDLE_ENFORCE_GT(porder, 0.0f,
|
|
platform::errors::InvalidArgument(
|
|
"The input porder of p_norm is not support for "
|
|
"porder <= 0, But received porder=%f.",
|
|
porder));
|
|
auto xdim = ctx->GetInputDim("X");
|
|
int axis = ctx->Attrs().Get<int>("axis");
|
|
bool keepdim = ctx->Attrs().Get<bool>("keepdim");
|
|
if (axis < 0) axis = xdim.size() + axis;
|
|
std::vector<int> reduce_dims;
|
|
for (int i = 0; i < xdim.size(); ++i) {
|
|
if (i != axis) reduce_dims.emplace_back(xdim[i]);
|
|
}
|
|
xdim[axis] = 1;
|
|
if (keepdim) {
|
|
ctx->SetOutputDim("Out", xdim);
|
|
} else {
|
|
ctx->SetOutputDim("Out", framework::make_ddim(reduce_dims));
|
|
}
|
|
}
|
|
};
|
|
|
|
class PnormOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "p_norm");
|
|
OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "p_norm");
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
|
"Out@GRAD", "p_norm");
|
|
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
|
|
"X@GRAD", "p_norm");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class PnormOpGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("p_norm_grad");
|
|
op->SetAttrMap(this->Attrs());
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("Out", this->Output("Out"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
using CPU = paddle::platform::CPUDeviceContext;
|
|
|
|
REGISTER_OPERATOR(p_norm, ops::PnormOp, ops::PnormOpMaker,
|
|
ops::PnormOpGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::PnormOpGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(p_norm_grad, ops::PnormOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(p_norm, ops::PnormKernel<CPU, float>,
|
|
ops::PnormKernel<CPU, double>);
|
|
REGISTER_OP_CPU_KERNEL(p_norm_grad, ops::PnormGradKernel<CPU, float>,
|
|
ops::PnormGradKernel<CPU, double>);
|