You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
298 lines
11 KiB
298 lines
11 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/operators/math/pooling.h"
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
class PoolOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override;
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override;
|
|
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string& var_name, const Tensor& tensor,
|
|
const framework::OpKernelType& expected_kernel_type) const override;
|
|
};
|
|
|
|
class PoolOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override;
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override;
|
|
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string& var_name, const Tensor& tensor,
|
|
const framework::OpKernelType& expected_kernel_type) const override;
|
|
};
|
|
|
|
class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override;
|
|
};
|
|
|
|
class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override;
|
|
};
|
|
|
|
template <typename T = int>
|
|
inline void UpdatePadding(std::vector<T>* paddings, const bool global_pooling,
|
|
const bool adaptive,
|
|
const std::string padding_algorithm,
|
|
const framework::DDim data_dims,
|
|
const std::vector<T>& strides,
|
|
const std::vector<T>& ksize) {
|
|
// set padding size == data_dims.size() * 2
|
|
auto data_shape = framework::vectorize<T>(data_dims);
|
|
if (static_cast<int>(paddings->size()) == data_dims.size()) {
|
|
for (int i = 0; i < data_dims.size(); ++i) {
|
|
T copy_pad = *(paddings->begin() + 2 * i);
|
|
paddings->insert(paddings->begin() + 2 * i + 1, copy_pad);
|
|
}
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(
|
|
data_dims.size() * 2, paddings->size(),
|
|
"Paddings size should be the same or twice as the pooling size.");
|
|
}
|
|
|
|
// when padding_algorithm is "VALID" or "SAME"
|
|
if (padding_algorithm == "SAME") {
|
|
for (int i = 0; i < data_dims.size(); ++i) {
|
|
T out_size = (data_dims[i] + strides[i] - 1) / strides[i];
|
|
T pad_sum =
|
|
std::max((out_size - 1) * strides[i] + ksize[i] - data_shape[i],
|
|
static_cast<T>(0));
|
|
T pad_0 = pad_sum / 2;
|
|
T pad_1 = pad_sum - pad_0;
|
|
*(paddings->begin() + i * 2) = pad_0;
|
|
*(paddings->begin() + i * 2 + 1) = pad_1;
|
|
}
|
|
} else if (padding_algorithm == "VALID") {
|
|
for (auto it = paddings->begin(); it != paddings->end(); it++) {
|
|
*it = 0;
|
|
}
|
|
}
|
|
|
|
// if global_pooling == true or adaptive == true, padding will be ignore
|
|
if (global_pooling || adaptive) {
|
|
for (auto it = paddings->begin(); it != paddings->end(); it++) {
|
|
*it = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T = int>
|
|
inline void UpdateKsize(std::vector<T>* ksize,
|
|
const framework::DDim data_dims) {
|
|
ksize->resize(static_cast<size_t>(data_dims.size()));
|
|
for (size_t i = 0; i < ksize->size(); ++i) {
|
|
*(ksize->begin() + i) = static_cast<T>(data_dims[i]);
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class PoolKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* in_x = context.Input<Tensor>("X");
|
|
Tensor* out = context.Output<Tensor>("Out");
|
|
|
|
std::string pooling_type = context.Attr<std::string>("pooling_type");
|
|
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
std::string data_format = context.Attr<std::string>("data_format");
|
|
bool exclusive = context.Attr<bool>("exclusive");
|
|
bool adaptive = context.Attr<bool>("adaptive");
|
|
bool global_pooling = context.Attr<bool>("global_pooling");
|
|
std::string padding_algorithm =
|
|
context.Attr<std::string>("padding_algorithm");
|
|
|
|
const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
|
|
|
|
// update paddings
|
|
auto in_x_dims = in_x->dims();
|
|
framework::DDim data_dims;
|
|
if (channel_last) {
|
|
data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
|
|
} else {
|
|
data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
|
|
}
|
|
|
|
UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
|
|
data_dims, strides, ksize);
|
|
if (data_dims.size() * 2 == static_cast<int>(paddings.size())) {
|
|
for (int i = 0; i < data_dims.size(); ++i) {
|
|
paddings.erase(paddings.begin() + i + 1);
|
|
}
|
|
}
|
|
|
|
if (global_pooling) {
|
|
UpdateKsize(&ksize, data_dims);
|
|
}
|
|
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
switch (ksize.size()) {
|
|
case 2: {
|
|
if (pooling_type == "max") {
|
|
paddle::operators::math::Pool2dFunctor<
|
|
DeviceContext, paddle::operators::math::MaxPool<T>, T>
|
|
pool2d_forward;
|
|
paddle::operators::math::MaxPool<T> pool_process;
|
|
pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
|
|
pool_process, true, false, out);
|
|
|
|
} else if (pooling_type == "avg") {
|
|
paddle::operators::math::Pool2dFunctor<
|
|
DeviceContext, paddle::operators::math::AvgPool<T>, T>
|
|
pool2d_forward;
|
|
paddle::operators::math::AvgPool<T> pool_process;
|
|
pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
|
|
pool_process, exclusive, adaptive, out);
|
|
}
|
|
} break;
|
|
case 3: {
|
|
if (pooling_type == "max") {
|
|
paddle::operators::math::Pool3dFunctor<
|
|
DeviceContext, paddle::operators::math::MaxPool<T>, T>
|
|
pool3d_forward;
|
|
paddle::operators::math::MaxPool<T> pool_process;
|
|
pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
|
|
pool_process, true, false, out);
|
|
|
|
} else if (pooling_type == "avg") {
|
|
paddle::operators::math::Pool3dFunctor<
|
|
DeviceContext, paddle::operators::math::AvgPool<T>, T>
|
|
pool3d_forward;
|
|
paddle::operators::math::AvgPool<T> pool_process;
|
|
pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
|
|
pool_process, exclusive, adaptive, out);
|
|
}
|
|
} break;
|
|
default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class PoolGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* in_x = context.Input<Tensor>("X");
|
|
const Tensor* out = context.Input<Tensor>("Out");
|
|
const Tensor* out_grad =
|
|
context.Input<Tensor>(framework::GradVarName("Out"));
|
|
Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
std::string pooling_type = context.Attr<std::string>("pooling_type");
|
|
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
bool exclusive = context.Attr<bool>("exclusive");
|
|
bool adaptive = context.Attr<bool>("adaptive");
|
|
std::string data_format = context.Attr<std::string>("data_format");
|
|
bool global_pooling = context.Attr<bool>("global_pooling");
|
|
std::string padding_algorithm =
|
|
context.Attr<std::string>("padding_algorithm");
|
|
|
|
const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
|
|
|
|
// update paddings
|
|
auto in_x_dims = in_x->dims();
|
|
framework::DDim data_dims;
|
|
if (channel_last) {
|
|
data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
|
|
} else {
|
|
data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
|
|
}
|
|
UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
|
|
data_dims, strides, ksize);
|
|
if (data_dims.size() * 2 == static_cast<int>(paddings.size())) {
|
|
for (int i = 0; i < data_dims.size(); ++i) {
|
|
paddings.erase(paddings.begin() + i + 1);
|
|
}
|
|
}
|
|
|
|
if (global_pooling) {
|
|
UpdateKsize(&ksize, data_dims);
|
|
}
|
|
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
if (in_x_grad) {
|
|
in_x_grad->mutable_data<T>(context.GetPlace());
|
|
paddle::operators::math::SetConstant<DeviceContext, T> set_constant;
|
|
set_constant(dev_ctx, in_x_grad, 0.0);
|
|
|
|
switch (ksize.size()) {
|
|
case 2: {
|
|
if (pooling_type == "max") {
|
|
paddle::operators::math::MaxPool2dGradFunctor<DeviceContext, T>
|
|
pool2d_backward;
|
|
pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
|
|
paddings, data_format, in_x_grad);
|
|
} else if (pooling_type == "avg") {
|
|
paddle::operators::math::Pool2dGradFunctor<
|
|
DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
|
|
pool2d_backward;
|
|
paddle::operators::math::AvgPoolGrad<T> pool_process;
|
|
pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
|
|
paddings, data_format, pool_process, exclusive,
|
|
adaptive, in_x_grad);
|
|
}
|
|
} break;
|
|
case 3: {
|
|
if (pooling_type == "max") {
|
|
paddle::operators::math::MaxPool3dGradFunctor<DeviceContext, T>
|
|
pool3d_backward;
|
|
pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
|
|
paddings, data_format, in_x_grad);
|
|
} else if (pooling_type == "avg") {
|
|
paddle::operators::math::Pool3dGradFunctor<
|
|
DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
|
|
pool3d_backward;
|
|
paddle::operators::math::AvgPoolGrad<T> pool_process;
|
|
pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
|
|
paddings, data_format, pool_process, exclusive,
|
|
adaptive, in_x_grad);
|
|
}
|
|
} break;
|
|
default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|