You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
220 lines
8.5 KiB
220 lines
8.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/rank_loss_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class RankLossOp : public framework::OperatorWithKernel {
|
|
public:
|
|
RankLossOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "RankLoss");
|
|
OP_INOUT_CHECK(ctx->HasInput("Left"), "Input", "Left", "RankLoss");
|
|
OP_INOUT_CHECK(ctx->HasInput("Right"), "Input", "Right", "RankLoss");
|
|
|
|
auto label_dims = ctx->GetInputDim("Label");
|
|
auto left_dims = ctx->GetInputDim("Left");
|
|
auto right_dims = ctx->GetInputDim("Right");
|
|
// check label_dims valid
|
|
PADDLE_ENFORCE_GE(
|
|
label_dims.size(), 1,
|
|
platform::errors::InvalidArgument(
|
|
"The dimension size of Input(Label) must be greater than "
|
|
"or equal to 1, but received %d.",
|
|
label_dims.size()));
|
|
PADDLE_ENFORCE_LE(
|
|
label_dims.size(), 2,
|
|
platform::errors::InvalidArgument("The dimension size of Input(Label) "
|
|
"must be less than or equal to 2, "
|
|
"but received %d.",
|
|
label_dims.size()));
|
|
if (label_dims.size() == 2U) {
|
|
PADDLE_ENFORCE_EQ(
|
|
label_dims[1], 1,
|
|
platform::errors::InvalidArgument(
|
|
"The last dimension of Input(Label) must be 1, but received %d.",
|
|
label_dims[1]));
|
|
}
|
|
// check left_dims valid
|
|
PADDLE_ENFORCE_GE(
|
|
left_dims.size(), 1,
|
|
platform::errors::InvalidArgument(
|
|
"The dimension size of Input(Left) must be greater than "
|
|
"or equal to 1, but received %d.",
|
|
left_dims.size()));
|
|
PADDLE_ENFORCE_LE(
|
|
left_dims.size(), 2,
|
|
platform::errors::InvalidArgument("The dimension size of Input(Left) "
|
|
"must be less than or equal to 2, "
|
|
"but received %d.",
|
|
left_dims.size()));
|
|
if (left_dims.size() == 2U) {
|
|
PADDLE_ENFORCE_EQ(
|
|
left_dims[1], 1,
|
|
platform::errors::InvalidArgument(
|
|
"The last dimension of Input(Left) must be 1, but received %d.",
|
|
left_dims[1]));
|
|
}
|
|
// check right_dims valid
|
|
PADDLE_ENFORCE_GE(
|
|
right_dims.size(), 1,
|
|
platform::errors::InvalidArgument(
|
|
"The dimension size of Input(Right) must be greater than "
|
|
"or equal to 1, but received %d.",
|
|
right_dims.size()));
|
|
PADDLE_ENFORCE_LE(
|
|
right_dims.size(), 2,
|
|
platform::errors::InvalidArgument("The dimension size of Input(Right) "
|
|
"must be less than or equal to 2, "
|
|
"but received %d.",
|
|
right_dims.size()));
|
|
if (right_dims.size() == 2U) {
|
|
PADDLE_ENFORCE_EQ(
|
|
right_dims[1], 1,
|
|
platform::errors::InvalidArgument(
|
|
"The last dimension of Input(Right) must be 1, but received %d.",
|
|
right_dims[1]));
|
|
}
|
|
PADDLE_ENFORCE_EQ(
|
|
label_dims[0], left_dims[0],
|
|
platform::errors::InvalidArgument(
|
|
"The first dimension of Input(Label) and Input(Left) "
|
|
"must have the same value. But received Label.dims[0]=%d, "
|
|
"Left.dims[0]=%d.",
|
|
label_dims[0], left_dims[0]));
|
|
PADDLE_ENFORCE_EQ(
|
|
label_dims[0], right_dims[0],
|
|
platform::errors::InvalidArgument(
|
|
"The first dimension of Input(Label) and Input(Right) "
|
|
"must have the same value. But received Label.dims[0]=%d, "
|
|
"Right.dims[0]=%d.",
|
|
label_dims[0], right_dims[0]));
|
|
ctx->SetOutputDim("Out", label_dims);
|
|
}
|
|
};
|
|
|
|
class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Label",
|
|
"(2-D Tensor with shape [batch_size x 1]) "
|
|
"The label indicating A ranked higher than B or not.");
|
|
AddInput("Left",
|
|
"(2-D Tensor with shape [batch_size x 1]) "
|
|
"The output of RankNet for doc A.");
|
|
AddInput("Right",
|
|
"(2-D Tensor with shape [batch_size x 1]) "
|
|
"The output of RankNet for doc B.");
|
|
AddOutput("Out",
|
|
"(2-D Tensor with shape [batch_size x 1]) "
|
|
"The output loss of RankLoss operator.");
|
|
AddComment(R"DOC(
|
|
RankLoss Operator.
|
|
|
|
RankLoss operator for RankNet
|
|
(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf).
|
|
RankNet is a pairwise ranking model with
|
|
one training sample consisting of a pair of doc A and B, and the label P
|
|
indicating that A is ranked higher than B or not:
|
|
|
|
P = {0, 1} or {0, 0.5, 1}, where 0.5 means no information about the rank of
|
|
the input pair.
|
|
|
|
The RankLoss operator takes three inputs: Left (o_i), Right (o_j) and Label
|
|
(P_{i,j}), which represent the output score of RankNet for the two docs and
|
|
the label respectively, and yields the rank loss C_{i,j} using the following
|
|
equation:
|
|
|
|
$$
|
|
C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
|
|
o_{i,j} = o_i - o_j \\
|
|
\tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
|
|
$$
|
|
|
|
The operator can take batch inputs with size batch_size (batch_size >= 1).
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class RankLossGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
RankLossGradOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "RankLossGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput("Left"), "Input", "Left", "RankLossGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput("Right"), "Input", "Right", "RankLossGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
|
framework::GradVarName("Out"), "RankLossGrad");
|
|
|
|
auto left_dims = ctx->GetInputDim("Left");
|
|
auto right_dims = ctx->GetInputDim("Right");
|
|
auto left_grad_name = framework::GradVarName("Left");
|
|
auto right_grad_name = framework::GradVarName("Right");
|
|
|
|
if (ctx->HasOutput(left_grad_name)) {
|
|
ctx->SetOutputDim(left_grad_name, left_dims);
|
|
}
|
|
|
|
if (ctx->HasOutput(right_grad_name)) {
|
|
ctx->SetOutputDim(right_grad_name, right_dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class RankLossGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("rank_loss_grad");
|
|
op->SetInput("Label", this->Input("Label"));
|
|
op->SetInput("Left", this->Input("Left"));
|
|
op->SetInput("Right", this->Input("Right"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("Left"), this->InputGrad("Left"));
|
|
op->SetOutput(framework::GradVarName("Right"), this->InputGrad("Right"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(rank_loss, ops::RankLossOp, ops::RankLossOpMaker,
|
|
ops::RankLossGradMaker<paddle::framework::OpDesc>,
|
|
ops::RankLossGradMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(rank_loss_grad, ops::RankLossGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
rank_loss, ops::RankLossKernel<paddle::platform::CPUDeviceContext, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
rank_loss_grad,
|
|
ops::RankLossGradKernel<paddle::platform::CPUDeviceContext, float>);
|