You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
4.7 KiB
121 lines
4.7 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/operators/reduce_ops/reduce_mean_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
// NOTE(dengkaipeng): Input(Out) is unnecessary in reduce_mean_grad
|
|
// calcualtion, but will incur a reduce_mean_grad op after
|
|
// reduce_mean_grad_grad, delete Input(Out) here.
|
|
// This change has no effect on reduce_mean_grad calculations.
|
|
template <typename T>
|
|
class ReduceMeanOpGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("reduce_mean_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetAttrMap(this->Attrs());
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
}
|
|
};
|
|
|
|
class ReduceMeanDoubleGradDescMaker : public framework::GradOpDescMakerBase {
|
|
public:
|
|
using framework::GradOpDescMakerBase::GradOpDescMakerBase;
|
|
|
|
std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
|
|
std::vector<std::unique_ptr<framework::OpDesc>> ops;
|
|
auto x_gg = OutputGrad(framework::GradVarName("X")); // input ddx
|
|
auto out_grads = InputGrad(framework::GradVarName("Out"));
|
|
if (!out_grads.empty()) {
|
|
auto* out_grad_op = new framework::OpDesc();
|
|
out_grad_op->SetType("reduce_mean");
|
|
out_grad_op->SetInput("X", x_gg);
|
|
out_grad_op->SetAttrMap(Attrs());
|
|
out_grad_op->SetOutput("Out", out_grads);
|
|
ops.emplace_back(out_grad_op);
|
|
}
|
|
|
|
return ops;
|
|
}
|
|
};
|
|
class ReduceMeanDoubleGradOpBaseMaker : public imperative::GradOpBaseMakerBase {
|
|
public:
|
|
using imperative::GradOpBaseMakerBase::GradOpBaseMakerBase;
|
|
|
|
std::shared_ptr<imperative::GradOpNode> operator()() const override {
|
|
auto out_grads = InputGrad(framework::GradVarName("Out"));
|
|
if (!out_grads.empty()) {
|
|
auto x_gg = OutputGrad(framework::GradVarName("X")); // input ddx
|
|
auto node = this->NewGradNode();
|
|
{
|
|
imperative::TracedGradOp op(node);
|
|
op.SetType("reduce_mean");
|
|
op.SetInput("X", x_gg);
|
|
op.SetAttrMap(Attrs());
|
|
op.SetOutput("Out", out_grads);
|
|
}
|
|
return node;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
};
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReduceMeanGradNoNeedBufferVarInferer, "X");
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
class __reduce_meanMaker__ : public ops::ReduceOpMaker {
|
|
protected:
|
|
virtual std::string GetName() const { return "reduce_mean"; }
|
|
virtual std::string GetOpType() const { return "Reduce reduce_mean"; }
|
|
};
|
|
|
|
REGISTER_OPERATOR(reduce_mean, ops::ReduceOp, __reduce_meanMaker__,
|
|
ops::ReduceMeanOpGradMaker<paddle::framework::OpDesc>,
|
|
ops::ReduceMeanOpGradMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(reduce_mean_grad, ops::ReduceGradOp,
|
|
ops::ReduceMeanDoubleGradDescMaker,
|
|
ops::ReduceMeanDoubleGradOpBaseMaker,
|
|
ops::ReduceMeanGradNoNeedBufferVarInferer);
|
|
REGISTER_OP_CPU_KERNEL(reduce_mean,
|
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
|
|
float, ops::MeanFunctor>,
|
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
|
|
double, ops::MeanFunctor>,
|
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
|
|
int, ops::MeanFunctor>,
|
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
|
|
int64_t, ops::MeanFunctor>);
|
|
|
|
template <typename T>
|
|
using CPUReduceMeanGradKernel =
|
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, T,
|
|
ops::MeanGradFunctor, true>;
|
|
|
|
REGISTER_OP_CPU_KERNEL(reduce_mean_grad, CPUReduceMeanGradKernel<float>,
|
|
CPUReduceMeanGradKernel<double>,
|
|
CPUReduceMeanGradKernel<int>,
|
|
CPUReduceMeanGradKernel<int64_t>);
|